Biologie und Haltung von Gürteltieren

(Dasypodidae)

INAUGURAL-DISSERTATION

zur Erlangung der Doktorwürde
der Veterinärmedizinischen Fakultät
der Universität Zürich

vorgelegt von
Mariella Superina

Tierärztin von Winterthur / ZH und Aarau / AG

Genehmigt auf Antrag von
Prof. Dr. Ewald Isenbügel, Referent
Prof. Dr. Rico Thun, Korreferent

Zürich 2000
Zentralstelle der Studentenschaft
Inhaltsverzeichnis

1 Einleitung .. 7
 1.1 Problemstellung ... 7
 1.2 Material und Methodik ... 8

2 Allgemeine Informationen ... 11
 2.1 Gürteltiere als Modelle in der wissenschaftlichen Forschung 11
 2.2 Traditionen .. 11
 2.3 Wissenschaftliche und umgangssprachliche Namen 12
 2.4 Taxonomie .. 14
 2.5 Status .. 17
 2.6 Evolution ... 18
 2.6.1 Ursprung der Xenarthra ... 18
 2.6.2 Verwandtschaft zu anderen Säugetieren 19
 2.6.3 Klassierung innerhalb der Xenarthra 19
 2.6.4 Entwicklung in Südamerika .. 20
 2.6.5 Ausbreitung nach Norden .. 21
 2.6.6 Evolution und Chromosomenzahl der heutigen Arten 22

2.7 Identifikation .. 23

2.8 Verbreitung ... 29

2.9 Anatomie .. 37
 2.9.1 Äusseres Erscheinungsbild ... 37
 2.9.2 Skelett ... 42
 2.9.2.1 Axialskelett ... 42
 2.9.2.2 Schädel ... 45
 2.9.2.3 Zähne ... 47
 2.9.3 Kreislaufsystem ... 48
 2.9.4 Innere Organe und Weichteile ... 49
 2.9.4.1 Lymphknoten .. 49
 2.9.4.2 Milz .. 50
 2.9.4.3 Gehirn ... 50
 2.9.4.4 Drüsen ... 51
 2.9.4.5 Verdauungsapparat .. 51
 2.9.4.6 Geschlechtsorgane ... 52
Inhaltsverzeichnis

2.10 Physiologie
- 2.10.1 Hämatologie .. 55
- 2.10.2 Körpertemperatur ... 55
- 2.10.3 Atmung .. 57
- 2.10.4 Metabolismus .. 59
- 2.10.5 Sinnesorgane .. 60
- 2.10.6 Immunologie .. 61
- 2.10.7 Konzentrationskapazität der Nieren 61

2.11 Ernährung
- 2.11.1 Karnivoren - Omnivoren 63
- 2.11.2 Opportunistische Insektenivoren 65
- 2.11.3 Überwiegende Insektenivoren 67

2.12 Reproduktion
- 2.12.1 Männerliche Tiere .. 68
- 2.12.2 Weibliche Tiere: Zyklus 70
- 2.12.3 Verzögerte Implantation 70
- 2.12.4 Polyembryonie .. 72
- 2.12.5 Plazentation ... 75
- 2.12.6 Entwicklung nach der Geburt 77

2.13 Ethologie
- 2.13.1 Fortbewegung .. 77
- 2.13.2 Lautäußerung ... 78
- 2.13.3 Fluchtverhalten .. 78
- 2.13.4 Graben .. 80
- 2.13.5 Schwimmen ... 85
- 2.13.6 Aktivität ... 86
- 2.13.7 Schlafen .. 88
- 2.13.8 Sozialverhalten .. 89
- 2.13.9 Reproduktionsverhalten 90

2.14 Krankheiten
- 2.14.1 Verletzungen ... 91
- 2.14.2 Infektionen ... 92
 - 2.14.2.1 Virale Infekte .. 92
 - 2.14.2.2 Bakterielle Infekte 93
 - 2.14.2.3 Mykosen .. 93
- 2.14.3 Parasiten ... 94
- 2.14.4 Neoplasien ... 100
- 2.14.5 Lepra ... 100
3 Haltung in Menschenobhut 105

3.1 Arten 105

3.2 Lebensdauer in Menschenobhut 106

3.3 Gehege 107
 3.3.1 Gehegegrösse 107
 3.3.2 Umgrenzung des Geheges 108
 3.3.3 Untergrund und Einstreu 108
 3.3.4 Einrichtung 109
 3.3.5 Klima 110
 3.3.6 Gruppen- oder Einzelhaltung 110
 3.3.7 Haltung in Mischgehegen 111
 3.3.8 Laborhaltung 112

3.4 Ernährung 113
 3.4.1 Allgemeine Bemerkungen 113
 3.4.2 Blut- und Futteranalysen 114
 3.4.3 Fütterung von Labortieren 115
 3.4.4 Fütterung im Zoo 116
 3.4.5 Adaptation 120
 3.4.6 Vitamin K 120

3.5 Klinische Werte und Hämatologie 121

3.6 Reproduktion 125
 3.6.1 Zuchterfolge und -probleme in Menschenobhut 125
 3.6.2 Trächtigkeitsuntersuchung 132
 3.6.3 Handaufzucht 133

3.7 Ethologie / Stereotypien 136

3.8 Handling 137
 3.8.1 Halten von Gürteltieren 137
 3.8.2 Altersbestimmung 137
 3.8.3 Blutentnahme 138
 3.8.4 Injektionsstellen 139
 3.8.5 Untersuchung 140

3.9 Erkrankungen in Menschenobhut 141
 3.9.1 Allgemeine Bemerkungen 141
 3.9.2 Dermatopathien 142
 3.9.3 Erkrankungen des Verdauungstrakts 144
 3.9.4 Mangelerkrankungen 145
4 Inhaltsverzeichnis

3.9.5 Erkrankungen des Respirationstrakts 146
3.9.6 Erkrankungen des Urogenitaltrakts 146
3.9.7 Neurologische Erkrankungen 147
3.9.8 Parasiten 147
 3.9.8.1 Ektoparasiten 147
 3.9.8.2 Endoparasiten 148
3.9.9 Mykosen 148
3.9.10 Anderes 149
3.9.11 Pharmakologie 150
 3.9.11.1 Allgemeines 150
 3.9.11.2 Anästhesie 150
 3.9.11.3 Antibiotika 153
 3.9.11.4 Antiparasitika 153
3.10 Zoonosen 155

4 Resultate der Umfrage 158

4.1 Allgemeines 158
4.2 Gürteltierarten 158
4.3 Haltungsformen 159
4.4 Fütterung 163
4.5 Zucht 166
4.6 Pathologien und prophylaktische Massnahmen 169
4.7 Ethologie 174

5 Diskussion 176

5.1 Sinn der Haltung von Gürteltieren in Zoologischen Gärten 176
5.2 Arten 176
5.3 Haltung 179
 5.3.1 Gehegegrösse und -einrichtung 179
 5.3.2 Präsentation 182
 5.3.3 Management 185
5.4 Fütterung 186
5.5 Reproduktion 190
5.6 Pathologien 193
5.7 Ethologie

5.7.1 Verhaltensstörungen

5.7.2 Behavioral enrichment

5.8 Schlussfolgerungen

6 Zusammenfassung

7 Summary

8 Anhang

9 Literaturverzeichnis
Abkürzungen

Im Text verwendete Abkürzungen

A. Arteria
BID Zweimal täglich
d Tag / Tage
Gl. Glandula
i.d. Intradermal
i.m. Intramuskulär
i.v. Intravenös
KL Kopf- und Körperlänge
Ln. Lymphonodus
M. Musculus
Mä Männchen
p.o. Per os
Proc. Processus
R. Ramus
s.c. Subkutan
SID Einmal täglich
SL Schädellänge (kondylonasale Länge)
V. Vena
We Weibchen
ZF Zahnformel; Anzahl Zähne je Kieferhälfte in der Darstellungsweise Maxilla / Mandibula.

(Arg) Argentinien
(Bol) Bolivien
(Br) Brasilien
(Chi) Chile
(Gua) Guatemala
(Kol) Kolumbien
(Mex) Mexiko
(Ven) Venezuela
1 Einleitung

In den letzten 30 Jahren sind aus diesen Forschungszweigen wertvolle Informationen zur Haltung und Zucht von Gürteltieren hervorgegangen, welche auch in Zoologischen Gärten zur Verbesserung der Haltung genutzt werden könnten. Eine Zusammenfassung dieser Publikationen gibt es noch nicht, welche die Verbreitung und Durchsetzung dieser neuer Erkenntnisse erheblich erleichtern würde.

1.1 Problemstellung

1.2 Material und Methodik

Die vorliegenden Untersuchungen basieren hauptsächlich auf englischen, spanischen, portugiesischen und deutschen Publikationen der letzten 100 Jahre. Die Literaturliste wurde zusammengestellt aufgrund diverser Suchprogramme im Internet (medline, ovid, AltaVista) sowie Verzeichnissen der Bibliotheken der ETH Zürich, Universität Zürich, University of Cambridge, University of Chicago, der Sociedad Científica Argentina und durch persönliche Kontakte mit Gürteltier-Forschern in den USA, Argentinien und Venezuela.

Zur Angleichung der Ergebnisse wurden folgende Annahmen getroffen:

Gehegegrösse: Bei der Angabe “zwischen x und y m²” wurde das kleinere Mass der kleineren Gürteltiergruppe zugeordnet. Waren zwei Flächen angegeben, aber 3 Gürteltiergruppen, so wurde für die mittlere Gruppe der Durchschnittswert des grössten und des kleinsten Geheges angenommen.

Reinigung: Es stellte sich bei der Analyse heraus, dass die Frage unklar formuliert war. Einige Zoos verstanden unter “Reinigung” die gründliche Desinfektion des ganzen Geheges, andere wiederum gaben die Frequenz des “spot-cleanings” an. Wo sowohl die Desinfektion als auch die tägliche Kotentfernung angegeben waren, wurde der Wert der gründlichen Reinigung zur Analyse beigezogen. Es ist jedoch klar, dass die verwendeten Angaben das Bild verfälschen.

Entwurmung: Als “ja” wurden auch diejenigen Zoos gezählt, welche angegeben hatten, ihre Tiere nur nach regelmässiger Kot-Untersuchung zu entwurmen. Hingegen wurden diejenigen als “nein” klassiert, welche nur “wenn nötig” entwurmen.

Untersuchung: Waren “nur, wenn sie krank erscheinen” und eine andere Antwort angekreuzt, so wurde für die Analysen nur die zweite Angabe beachtet, da eine Untersuchung kranker Tiere als selbstverständlich erachtet wird.

2 Allgemeine Informationen

2.1 Gürteltiere als Modelle in der wissenschaftlichen Forschung

2.2 Traditionen

Gürteltiere stellen für einen Grossteil der Landbevölkerung Südamerikas eine wichtige Proteinquelle dar und werden aus diesem Grund gerne gejagt und z.B. über dem offenen Feuer im Panzer gebraten. Das helle Fleisch soll Ähnlichkeit mit Schweinefleisch haben. Die Panzer werden je nach Art für verschiedene Zwecke verwendet: Gewisse Indiovölker sollen die Panzer der Riesengürteltiere als Wiege oder Boot nutzen, während aus denjenigen

2.3 Wissenschaftliche und umgangssprachliche Namen

Tabelle 1: geläufigste Namen der heute vorkommenden Gürteltierarten

<table>
<thead>
<tr>
<th>Wissenschaftlicher Name</th>
<th>Deutsche Bezeichnung</th>
<th>Englische Bezeichnung</th>
<th>Spanische Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamyphorus truncatus</td>
<td>Kleiner Gürtelmull</td>
<td>Lesser or pink fairy armadillo</td>
<td>Pichi ciego menor</td>
</tr>
<tr>
<td>Burmeisteria retusa</td>
<td>Burmeister-Gürtelmull</td>
<td>Greater fairy or chacoan fairy armadillo</td>
<td>Pichi ciego mayor</td>
</tr>
<tr>
<td>Tolypeutes matacus</td>
<td>Kugelgürteltier</td>
<td>Southern three-banded armadillo</td>
<td>Mataco (bola); Bolita; quirquincho bola</td>
</tr>
<tr>
<td>Tolypeutes tricinctus</td>
<td>Dreibinden-Kugelgürteltier</td>
<td>Brazilian three-banded armadillo</td>
<td>Tatú-bola</td>
</tr>
<tr>
<td>Priodontes maximus</td>
<td>Riesengürteltier</td>
<td>Giant armadillo</td>
<td>Tatú carreta, Tatú-guasú</td>
</tr>
<tr>
<td>Cabassous tatouay</td>
<td>Grosses Nacktschwanz-Gürteltier</td>
<td>Greater naked-tailed armadillo</td>
<td>Tatú-ai mayor</td>
</tr>
<tr>
<td>Cabassous unicinctus</td>
<td>Nacktschwanz-Gürteltier</td>
<td>Southern naked-tailed armadillo</td>
<td>Cabasú; tatú-ai</td>
</tr>
<tr>
<td>Cabassous chacoensis</td>
<td>Chaco-Nacktschwanz-Gürteltier</td>
<td>Chacoan naked-tailed armadillo</td>
<td>Cabasú chico; tatú-ai menor</td>
</tr>
<tr>
<td>Cabassous centralis</td>
<td>Nördliches Nacktschwanz-Gürteltier</td>
<td>Northern naked-tailed armadillo</td>
<td>Tatú de rabo molle</td>
</tr>
<tr>
<td>Euphractus sexcinctus</td>
<td>Sechsbinden-Gürteltier</td>
<td>Yellow or six-banded armadillo</td>
<td>Peludo grande; quirquincho; gualacate</td>
</tr>
<tr>
<td>Chaetophractus villosus</td>
<td>Braunhaar-Gürteltier</td>
<td>Larger hairy armadillo</td>
<td>Peludo (mediano); quirquincho grande</td>
</tr>
<tr>
<td>Chaetophractus nationi</td>
<td>Anden-Borstengürteltier</td>
<td>Andean hairy armadillo</td>
<td>Peludo; Quirquincho andino</td>
</tr>
<tr>
<td>Ch. vellerosus</td>
<td>Weißhaar-Gürteltier</td>
<td>Small hairy or screaming armadillo</td>
<td>Piche llorón; peludo o quirquincho chico</td>
</tr>
<tr>
<td>Zaedyus pichiy</td>
<td>Zwerggürteltier</td>
<td>Pichi</td>
<td>Piche (patagónico)</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>Neunbinden-Gürteltier</td>
<td>Nine-banded or common long-nosed armadillo</td>
<td>Tatú; mulita grande; cachicamo</td>
</tr>
<tr>
<td>Dasypus hybridus</td>
<td>Südliches Siebenbinder-Gürteltier</td>
<td>Southern lesser long-nosed armadillo</td>
<td>Mulita chica; Tatú mulita; mulita orejuda</td>
</tr>
<tr>
<td>Dasypus sabanicola</td>
<td>Savannen-Gürteltier</td>
<td>Northern lesser long-nosed armadillo</td>
<td>Tatú de sabana</td>
</tr>
<tr>
<td>Dasypus septemcinctus</td>
<td>Nördliches Siebenbinder-Gürteltier</td>
<td>Brazilian lesser long-nosed armadillo</td>
<td>Tatú-mulita; mulita chica</td>
</tr>
<tr>
<td>Dasypus yepesi</td>
<td>Yungas-Gürteltier</td>
<td>Yunga's lesser long-nosed armadillo</td>
<td>Mulita de Mazza</td>
</tr>
<tr>
<td>Dasypus pilosus</td>
<td>Pelzgürteltier</td>
<td>Hairy long-nosed armadillo</td>
<td>Tatú-peludo</td>
</tr>
<tr>
<td>Dasypus kappleri</td>
<td>Kappler-Weichgürteltier</td>
<td>Greater long-nosed armadillo</td>
<td>Tatú-peba grande</td>
</tr>
</tbody>
</table>
2.4 Taxonomie

Tabelle 2: Taxonomie

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Mammalia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subklasse</td>
<td>Eutheria</td>
</tr>
<tr>
<td>Ordnung</td>
<td>Xenarthra</td>
</tr>
<tr>
<td>Unterordnung</td>
<td>Cingulata</td>
</tr>
<tr>
<td>Familie</td>
<td>Dasypodidae</td>
</tr>
<tr>
<td>Subfamilie</td>
<td>Chlamyphorinae</td>
</tr>
<tr>
<td>Genus</td>
<td>Chlamyphorus</td>
</tr>
<tr>
<td>Spezies</td>
<td>Chlamyphorus truncatus</td>
</tr>
<tr>
<td>Genus</td>
<td>Burmeisteria</td>
</tr>
<tr>
<td>Spezies</td>
<td>Burmeisteria retusa</td>
</tr>
<tr>
<td>Subfamilie</td>
<td>Tolypeutinae</td>
</tr>
<tr>
<td>Genus</td>
<td>Tolypeutes</td>
</tr>
<tr>
<td>Spezies</td>
<td>Tolypeutes tricinctus</td>
</tr>
<tr>
<td></td>
<td>Tolypeutes matacus</td>
</tr>
<tr>
<td>Subfamilie</td>
<td>Priodontinae</td>
</tr>
<tr>
<td>Genus</td>
<td>Priodontes</td>
</tr>
<tr>
<td>Spezies</td>
<td>Priodontes maximus</td>
</tr>
<tr>
<td>Genus</td>
<td>Cabassous</td>
</tr>
<tr>
<td>Spezies</td>
<td>Cabassous tatouay</td>
</tr>
<tr>
<td></td>
<td>Cabassous chacoensis</td>
</tr>
<tr>
<td></td>
<td>Cabassous centralis</td>
</tr>
</tbody>
</table>
Cabassous unicinctus

Subfamilie: Euphractinae
Genus: Euphractus
Spezies: Euphractus sexcinctus

Genus: Chaetophractus
Spezies: Chaetophractus vellerosus
Chaetophractus nationi
Chaetophractus villosus

Genus: Zaedyus
Spezies: Zaedyus pichiy

Subfamilie: Dasypodinae
Genus: Dasypus
Subgenus: Dasypus
Spezies: Dasypus novemcinctus
Dasypus septemcinctus
Dasypus sabanicola
Dasypus hybridus
Dasypus yepesi
Subgenus: Hyperoambon
Spezies: Dasypus kappleri
Subgenus: Cryptophractus
Spezies: Dasypus pilosus

Korrekterweise müsste das Genus *Burmeisteria* Gray (1865) in *Calyptophractus* Fitzinger (1871) umbenannt werden, da Salter (1865) bereits fünf Monate vor Gray ein Subgenus von Trilobiten als *Burmeisteria* beschrieb (Wetzel, 1985b). Wetzel geht in der erwähnten Publikation gar noch einen Schritt weiter und klassiert *Burmeisteria retusa* innerhalb des Genus *Chlamyphorus*, was von anderen Forschern wieder in Frage gestellt wird (S.F. Vizcaíno, pers. Mitt.). In dieser Arbeit wird trotzdem der Name *Burmeisteria retusa* verwendet, da dies die geläufigste wissenschaftliche Bezeichnung des Burmeister-Gürtelmulls ist.

Auch die Berechtigung von *Chaetophractus nationi* als eigenständige Art ist aufgrund der kleinen Anzahl studierter Tiere noch fraglich. Gemäss Wetzel (1985a) müssen noch mehr Exemplare untersucht werden, um ausschliessen zu können, dass es sich bei *Ch. nationi* nicht um eine Hochland-Subspezies von *Ch. vellerosus* handelt.
2.5 Status

Priodontes maximus: Internationaler Status: “endangered”
- CITES Appendix 1 seit 1973
- Gesetzlich geschützt in Brasilien, Argentinien, Paraguay, Surinam, Peru, Kolumbien

Chlamyphorus truncatus: Internationaler Status: “vulnerable”
- Argentinien: bedroht
- Größte der Population unbestimmt; vermutlich weniger selten, als allgemein angenommen wird (Chebez, 1994)

Burmeisteria retusa: Internationaler Status: “vulnerable”
- Argentinien: bedroht

Tolypeutes tricinctus: Internationaler Status: “vulnerable”

Chaetophractus nationi: Internationaler Status: “vulnerable”
- CITES Appendix 2

Dasypus pilosus: Internationaler Status: “vulnerable”

Tolypeutes matacus: Internationaler Status: “low risk / near threatened”

Cabassous tatouay: Internationaler Status: “low risk / near threatened”
- Uruguay: CITES Appendix 3
- Brasilien, Argentinien: bedroht

Dasypus sabanicola: Internationaler Status: “data deficient”

Zaedyus pichiy: Internationaler Status: “data deficient”
Allgemeine Informationen

Cabassous chacoensis: Internationaler Status: “data deficient”
Argentinien: bedroht

Cabassous centralis: Internationaler Status: “data deficient”
Costa Rica: CITES Appendix 3

Cabassous unicinctus: Brasilien: bedroht

2.6 Evolution

2.6.1 Ursprung der *Xenarthra*

2.6.2 Verwandtschaft zu anderen Säugetieren

2.6.3 Klassierung innerhalb der Xenarthra

2.6.4 Entwicklung in Südamerika

Dasypodidae sind seit dem mittleren bis späten Paläozän aus Patagonien und Ostbrasilien bekannt. Die ältesten bekannten Xenarthren, die Asthegotheriiini der Subfamilie Dasypodinae, werden als Omnivoren mit Tendenz zum Insektivorismus angesehen.

Dasypodidae und Pampatheriidae weisen einen anterioren und einen posterioren Schild auf, welche von einer variierenden Anzahl Gürteln verbunden werden, die dem Panzer eine gewisse Flexibilität geben.

Im Oligozän muss ein für Xenarthren sehr günstiges, d.h. wärmeres und feuchteres Klima geherrscht haben. Einerseits stammen die größten Exemplare aus dieser Zeit, und andererseits sind aus Argentinien 30 Spezies

2.6.5 Ausbreitung nach Norden

Fossilienfunde zeigen, dass *Dasypodidae*, *Pampatheriidae* und *Glyptodontidae* nach der Entstehung des Panamaischen Isthmus vor 3 Millionen Jahren im Rahmen des “Great American Biotic Interchange” nach Nordamerika eingewandert sind (Edmund, 1985; Scillato-Yané et al., 1999). Vor ca. 10'000 Jahren starben alle Glyptodonten in Nord- und Südamerika aus. Die ersten Exemplare von *Dasypus novemcinctus* wurden in den USA um 1849 registriert, d.h. es besteht eine Lücke von über 10'000 Jahren, während der Nordamerika frei von Gürteltieren war. Die frühen Dasypodiden können also nicht direkte Vorläufer der heutigen Gürteltierkolonien der USA sein. Diese gehen vielmehr auf eine erneute Einwanderung moderner Formen der *Xenarthra* aus dem tropischen Südamerika zurück. Die enge genetische Diversität der nordamerikanischen Populationen weist darauf hin, dass diese auf einer verhältnismässig geringen Anzahl eingewanderter Tiere basieren (Huchon et al., 1999). Verschiedene archäologische Funde deuten darauf hin, dass das Neunbinden-Gürteltier bereits in prähistorischen Zeiten Zentralamerika bevölkerte. Erstaunlich ist, dass *Dasypus novemcinctus* erst 10'000 Jahre nach der Wisconsin-Eiszeit, welche im späten Pleistozän endete, in die USA eingewandert ist. Es gibt keinen offensichtlichen Grund für diese Verzögerung; Ostmexiko weist weder eine physische noch eine klimatische Barriere auf, und die nördliche klimatische Grenze rückte bedeutend schneller
nach Norden vor als das Neunbinden-Gürteltier. Es scheint, dass die massive Ausbreitung in Richtung USA im letzten Jahrhundert ihren Grund im Wegfallen eines Hindernisses in Mexiko hatte. Es könnte sich hier um eine heute nicht mehr erkennbare physische Barriere oder um einen intrinsischen Faktor demographischer oder physiologischer Natur handeln. Die Überwindung eines physiologischen Hemmungsfaktors wäre ohne Zweifel ein evolutionärer Fortschritt (Humphrey, 1974; Scillato-Yané et al., 1999).

2.6.6 Evolution und Chromosomenzahl der heutigen Arten

Tolypeutes wird aufgrund mehrerer Merkmale wie Spermien-, Uterus- oder Panzerform und die Fähigkeit, sich einzukugeln, als die am weitesten evolvierte Gürteltier-Art angesehen (Scillato-Yané et al., 1999). Auch der Karyotyp von *Tolypeutes matus* (2N=38) ist weiter entwickelt als derjenige anderer Gürteltiere. Es sind keine akrozentrischen, dafür deutlich mehr (36) metazentrische Chromosomen vorhanden als bei anderen Arten (Jorge et al., 1977). Die Chromosomenzahl von *Dasypus novemcinctus* und *D. hybridus* ist z.B. 2N=64, wobei 46 davon akrozentrisch sind (Beath et al., 1962).

- *C. centralis*: 2N=62; 46 akrozentrisch (Benirschke et al., 1969)
- *Ch. villosus*: 2N=60; 28 akrozentrisch (Jorge et al., 1977)
- *E. sexcinctus*: 2N=58; 14 akrozentrisch (Jorge et al., 1977)
- *C. truncatus*: 2N=58 (Jorge, 1981)
- *P. maximus*: 2N=50; 24 akrozentrisch (Benirschke und Wurster, 1969)
2.7 Identifikation

In der Folge soll ein von Wetzel (1985a) entwickelter und nach Vizcaíno (1995) modifizierter Schlüssel zur Differenzierung der Gürteltierarten gegeben werden:

Erläuterungen:
Rostrum: Die Länge des Rostrums wurde gemessen von einer Verbindungs- linie zwischen den Foramina lacrimalia bis zur anterioren Spitze des Os nasale.

1. Weder Bulla tympanica noch knöcherner äusserer Gehörgang, stattdessen tympanischer Ring; Kopfschild eng; eine Reihe schmaler Knochenplättchen zwischen Kopf- und Schulterschild mit Schulterschild verbunden bzw. keine Knochenplättchen zwischen Kopf- und Schulterschild; ohne lange weisse Borsten: *Dasypus*, *Tolypeutes*, *Priodontes*, *Cabassous*
 → 15

2. Mit Bulla tympanica und verknöchertem äusserem Gehörgang und mit (1) breitem Kopfschild (Verhältnis Breite : Höhe = 0.69 bis über 1.0), eine einzige Reihe Knochenplättchen unmittelbar hinter Kopfschild und nicht breiter als Ohrenabstand, lange Borsten auf Panzer; oder (2) lange, weisse Borsten lateral und ventral: *Euphractinae* und *Chlamyphorinae*
 → 3

3. Augen und pinnae rudimentär; langer Gehörgang mit Öffnung auf posteriorer Seite der Orbita; Seite und Bauch des Körpers gänzlich überdeckt mit dichtem, langem, seidigem, weissem Haar; Körper in abgerundeter Steissplatte endend; kleine Gürteltiere (KL << 200mm, SL < 50mm); zwei frontale Erhebungen; ZF 7-8/8: *Chlamyphorinae*
 → 13
4. Augen und pinnae normal, nicht rudimentär; pinnae nicht am Hinterrand der Orbita; keine die Seite und den Bauch gänzlich überdeckende seidige Haare; Körper nicht mit abgerundeter Steissplatte endend; grösser (KL > 200mm, SL > 50mm); keine frontalen Erhebungen; ZF 8-9/9-10: *Euphractinae*

→ 5

5. Gross (KL > 400mm, SL > 100mm); Panzer blassgelb oder hellbraun; Haar weiss; kein kompletter beweglicher Gürtel an anteriorer Kante des Schulterschilds; Breite des Kopfschilds = 80% seiner Länge; Arcus zygomaticus lang und schmal: *Euphractus sexcinctus*

6. Klein (KL < 400mm, SL < 100mm); Rücken und Borsten hell- bis dunkelbraun; ein kompletter beweglicher Gürtel an anteriorer Kante des Schulterschilds; Breite des Kopfschilds > 80% seiner Länge; Arcus zygomaticus kürzer: *Zaedyus* und *Chaetophractus*

→ 7

7. Kurze Ohren, Ohrlänge < 20mm; Knochenplättchen am Rand des Panzers spitz zulaufend; Nacken-Knochenplättchen < 5mm lang (anterioposterior); ZF 8/9; anteriores Rostrum schmal, Breite 21% der Länge; Höhe des Arcus zygomaticus mehr oder weniger einheitlich, ohne sichtbare Kerbe unter der Orbita: *Zaedyus pichiy*

8. Ohrlänge > 20mm; Knochenplättchen am Rand des Panzers eher abgerundet; Nacken-Knochenplättchen > 6mm lang (anterioposterior); ZF 9/10; Breite des anterioren Rostrum 25 bis 33% seiner Länge; Arcus zygomaticus mit sichtbarer Kerbe unter der Orbita: *Chaetophractus*

→ 9

9. Kleiner (KL < 250mm, SL < 80mm); Ohr relativ lang, sich ausdehnend bis zur ersten unbeweglichen Knochenplättchenreihe des Schulterpanzers;
Länge : Breite - Verhältnis des Kopfschilds enger (Mittelwert 0.90); Rücken dunkel- und blassbraun gescheckt: *Chaetophractus vellerosus*

10. Grösser (KL > 250mm, SL > 80mm); Ohr kürzer; Länge : Breite - Verhältnis des Kopfschilds weiter (> 0.90): *Ch. natio* oder *Ch. villosus*

→ 11

11. Rücken hellbraun, mit langen, blassen Borsten bedeckt; Kopfschild so lang wie breit; Vorkommen beschränkt auf hohes Grasland in den Anden: *Chaetophractus nationi*

12. Rücken dunkelbraun, mit wenig blassen Borsten; Länge : Breite - Verhältnis des Kopfschilds 0.95: *Chaetophractus villosus*

13. Seitenränder des Panzers nicht mit Körper verbunden; Borsten unter dem Panzer hervorstehend; 4 oder 5 grosse, rechteckige Knochenplättchen am posterioren Rand des Kopfschilds; kleiner (KL um 120mm, SL um 40mm); deutlich anterior der Orbita gelegene hohe frontale Erhebungen: *Chlamyphorus truncatus*

14. Ganzer Panzer mit Körper verbunden; Kopfschild ohne Reihe grosser Knochenplättchen am posterioren Rand; grösser (KL um 160mm, SL um 44mm); weniger hohe, dafür breitere frontale Erhebungen anterior bis posterior der Orbita: *Burmeisteria retusa*

15. Schulter- und Beckenschild beweglich; ≥ 6 bewegliche Gürtel; Arcus zygomaticus an erhabenster Stelle > 5mm hoch; von lateral kein ausgeprägter Bogen zur maxillären Zahnreihe und zum Gaumen erkennbar; Mandibularkörper schmal, Höhe unter der gesamten Zahnreihe etwa gleich: *Priodontes*, *Cabassous* oder *Dasypus*

→ 19
16. Schulter- und Beckenschild starr und kuppelförmig; gewöhnlich 3 (ev. 1 oder 2) bewegliche Gürtel; schmaler Arcus zygomaticus, an erhabenster Stelle < 5mm hoch; von lateral ausgeprägter Bogen zur maxillären Zahnreihe und zum Gaumen erkennbar; Mandibularkörper unter den Enden der Zahnreihe deutlich weniger hoch als in der Mitte: *Tolypeutes*

→ 17

17. Vorderbeine mit 5 Zehen; ZF 8/9; knöcherner Vorsprung am Schädel über der Orbita (Sanborn, 1930): *Tolypeutes tricinctus*

18. Vorderbeine mit 3 oder 4 Zehen; ZF 9/9; kein knöcherner Vorsprung am Schädel über der Orbita: *Tolypeutes matacus*

19. Panzer weniger flexibel, mit 6 bis 11 beweglichen Gürteln; Ränder der Knochenplättchen der beweglichen Gürtel von dreieckigen Hornplättchen überlappt; auf Schulter- und Beckenschild rosettenförmig angeordnete abgerundete Hornplättchen; Vorderklauen mittelgross, nicht krummschwertförmig; Schwanz lang, > 55% der KL, mit sehr schmaler Spitze; Rostrum sehr lang, ≥ 55% der SL; Processus condylaris deutlich weniger hoch als Processus coronoideus: *Dasypus*

→ 29

20. Panzer sehr flexibel, mit 11 bis 14 beweglichen Gürteln; Ränder der Knochenplättchen der beweglichen Gürtel mit Rändern der Hornplättchen übereinstimmend; grosse, krummschwertförmige Vorderklauen; Schwanzlänge < 50% der KL; Rostrum < 50% der SL; Processus condylaris der Mandibula höher als Processus coronoideus: *Priodontinae*

→ 21

21. Schwanz bedeckt mit zusammenhängenden Knochenplättchen; gross (KL > 700mm, SL > 170mm); längeres Rostrum; zahlreiche Zähne, ZF stark varierend, 15/17 oder mehr, gesamthaft bis zu 100 Zähne (Krumbiegel, 1940): *Priodontes maximus*
22. Schwanz ohne Knochenplättchen, kann, muss aber nicht sichtbare Hornplättchen aufweisen; kleiner (KL < 495mm, SL < 125mm); Rostrum kürzer; weniger Zähne, ZF auch innerhalb der Art variabel (Krumbiegel, 1940), i.d.R. 9/8: *Cabassous*
→ 23

23. Grösser (KL 410 - 490mm, SL > 99mm); < 50 Knochenplättchen auf Kopfschild; Gaumen weiter nach kaudal reichend als Verbindungslinie zwischen Basen der Arcus zygomatica: *Cabassous tatouay*

24. Kleiner (KL < 450mm, falls im selben Verbreitungsgebiet wie *C.tatouay* < 350mm, SL < 91mm); zahlreichere Knochenplättchen auf Kopfschild, falls im selben Verbreitungsgebiet wie *C. tatouay* (Mittelwert 54.0); Gaumen nicht weiter nach kaudal reichend als Verbindungslinie zwischen Basen der Arcus zygomatica: *C.chacoensis, C.centralis und C.unicinctus*
→ 25

25. Kleinste *Cabassous*-Art (mittlere KL 303mm, mittlere SL 70mm); Ohren sehr kurz und mit fleischigem Rand und nicht abstehend wie bei anderen Arten: *Cabassous chacoensis*

26. Etwas grösser (KL > 320mm, SL > 75mm); grosse, abstehende Ohren: *C.centralis und C.unicinctus*
→ 27

27. Schädel schmal (mittlerer Interorbitalabstand 24.3mm, Abstand der Zygomatica 40.8mm); kleiner als angrenzende Populationen von *C.unicinctus* (mittlere KL 341mm, mittlere SL 77.1mm): *Cabassous centralis*

28. Schädel breiter (mittlerer Interorbitalabstand 26.6mm, Abstand der Zygomatica > 42mm); grösser als angrenzende Populationen von
29. Rücken und Bauch bedeckt von dichtem hellbraunem Pelz; 10-12 bewegliche Gürtel; Rostrum lang (66 - 88% der SL) und schmal (anterorostrale Breite nur 7% der SL): *Dasypus pilosus*

30. Behaarung spärlich am Bauch, unauffällig auf Rücken; 6-10 bewegliche Gürtel, Rostrum 53 - 67% der SL und Breite > 9% der SL: restliche *Dasypus*-Arten
 → 31

31. Große, vorstehende Hornplättchen (können > 17mm lang sein) an proximaler, posteriorder Oberfläche der Hintergliedmassen; rudimentäre fünfte Zehe an Vordergliedmasse; gross (KL > 475mm, SL > 111mm); posterolateraler Rand des Gaumens kielförmig: *Dasypus kappleri*

32. Ohne vorstehende Hornplättchen an Hintergliedmassen; fünfte Zehe an Vordergliedmasse normal ausgebildet; kleiner (KL < 475mm, SL < 111mm); posterolateraler Rand des Gaumens abgerundet statt kielförmig: restliche *Dasypus*-Arten

33. Vierter beweglicher Gürtel mit 54 - 64 Knochenplättchen; Schwanz länger (265 - 450mm und ≥ 70% der KL); seitlich am Panzer mehr gelb; Gaumen länger (69% der SL); grösser (KL 365 - 573mm, SL 78.7 - 110.9mm): *Dasypus novemcinctus*

34. 7 bis 9 bewegliche Gürtel; vierter beweglicher Gürtel mit 51 - 63 Knochenplättchen; Schwanz etwas kürzer (um 230mm, > 70% der KL); seitlich am Panzer hell; etwas kleiner (mittlere KL 320mm, SL um 71mm): *Dasypus yepesi*
35. Vierter beweglicher Gürtel mit 43 - 62 Knochenplättchen; Schwanz kürzer (125 - 205mm und < 70% der SL); Panzer weniger gelb; Gaumen kürzer (um 65% der SL); kleiner (KL 240 - 320mm, SL 57.9 - 75.5mm): *D.septemcinctus*, *D.sabanicola* und *D.hybridus*

→ 36

36. Kleiner (KL um 265mm, SL um 63.4mm) ausser der grösseren Ohren (31mm); weniger bewegliche Gürtel (Durchschnitt 6.5); vierter beweglicher Gürtel mit weniger Knochenplättchen: *Dasypus septemcinctus*

37. Grösser (mittlere KL 290mm, mittlere SL 68mm), Ohren 22 - 30mm; mehr bewegliche Gürtel (Durchschnitt 8); Verbreitungsgebiet nördliches Südamerika: *Dasypus sabanicola*

38. Grösser (mittlere KL 297mm, mittlere SL 70.2mm), Ohren 22 - 30mm; weniger bewegliche Gürtel (Durchschnitt 6.9); durch *D.septemcinctus* geographisch von *D.sabanicola* getrennt: *Dasypus hybridus*

2.8 Verbreitung

Anmerkungen
- Wo nicht anders vermerkt, sind die Provinzen bzw. Bundesstaaten angegeben, in welchen die besprochene Art angetroffen wurde.
- Als *Puna* wird die Hochebene in den Anden bezeichnet.
- *Xerophile Vegetation* umfasst die sich nur in trockenen Gebieten entwickelnde Flora.
- **Cerrado** bezeichnet eine savannenähnliche Formation mit charakteristischer Flora. Der Boden ist gut drainiert, tief, sehr sauer, nährstoffarm und aluminiumreich. Die Vegetation ist xerophil; Grasland wechselt sich ab mit dichten Waldungen. Es herrscht tropisches Klima mit deutlicher Trockenzeit. Die jährliche Niederschlagsmenge von 1’300mm fällt hauptsächlich in der Regenzeit (Marinho et al., 1997).

- Mit **Caatinga** wird eine Gegend im Nordosten Brasiliens bezeichnet, deren semi-arides Klima die Vegetation bestimmt. Diese ist in unregelmäßigem Muster verteilt; fast kalhe und steinige Flächen werden von wenigen waldähnlichen Zonen unterbrochen. Es dominieren an die langen Dürreperioden adaptierte Büsche mit kleinen Blättern oder Dornen sowie Bromelien und Kakteen.

- Der **Gran Chaco** umfasst das südöstliche Bolivien, das westliche Paraguay und das nordwestliche Argentinien. Der Chaco besteht aus zwei Anteilen: In den über 1000m.ü.M. liegenden Ausläufern der Puna begünstigt das warme und trockene Klima das Wachstum von niedrigen Büschen; Niederschläge beschränken sich auf den Sommer. In niedrigeren Gebieten finden sich tropische Trockenwälder, Gräser, Kakteen und Bromelien. Die mittlere Jahrestemperatur liegt hier zwischen 20 und 23ºC; Regen fällt ausschließlich zwischen November und März (Vizcaíno, 1997).

Genus Euphractus

Euphractus sexcinctus: Savannen des südlichen Surinam und angrenzendes Pará (Br); Maranhão (Silva Júnior et al., 1998); südöstliches brasilianisches Hochland bis Rio Grande do Sul (Br), Mato Grosso (Br); Gran Chaco; östliches und westliches Paraguay; Corrientes, Misiones, Formosa, Chaco, Salta, Jujuy, nördliches Santiago del Estero, nordöstliches Drittel von Buenos Aires (alles Arg); südöstliches Bolivien bis Santa Cruz; Uruguay.
Genus *Zaedyus*
Hauptsächlich in offem Gelände, an Basis von kleinen Büschen auf festem sandigem Untergrund (Meritt und Benirschke, 1973).

Zaedyus pichiy: Am südlichsten vorkommende Gürteltier-Art.
In Argentinien von Mendoza, San Luis und Buenos Aires nach Süden bis zum Río Santa Cruz; von der Atlantikküste Argentiniens nach Westen bis Grasland der chilenischen und argentinischen Anden; in Chile von Aconcagua bis Magellanstrasse.

Genus *Chaetophractus*
In Argentinien in *montes* (Buschwälder), *espinales* (Dornenbüsche) und *pampas* (baumlose Grasebenen) anzutreffen.

Chaetophractus villosus:
Chaco Paraguays (möglicherweise auch Boliviens und Argentiniens); in Argentinien von Mendoza, Córdoba und Santa Fe nach Süden bis Santa Cruz; angrenzendes Chile von Bio-Bio nach Süden bis Magallanes, Dazy Harbour.

Genus *Chlamyphorus*
Chlamyphorus truncatus: Rauhe, trockene, dünn besiedelte Gegend mit sehr geringer Niederschlagsmenge (< 400mm/Jahr); sandiger Untergrund;
wenn Vegetation, vorwiegend niedrigwachsende und kleinblättrige, oft dornenbesetzte Büsche (montes) (Minoprio, 1945; Meritt, 1985a).

Nur in Argentinien vorkommend: Mendoza, südöstliches San Juan, San Luis (ausser Nordosten), La Pampa, östliches La Rioja, südliches Catamarca, südöstliches Córdoba, südöstliches Buenos Aires, nördliches Río Negro (Bertonatti und Aprile, 1999).

Burmeisteria retusa:
Nördliches Argentinien (Salta, Chaco, Formosa), westliches Paraguay, südöstliches Bolivien (vermutlich ganzer Gran Chaco).

Genus Tolypeutes

Unbestimmtes Gebiet im nordöstlichen Hochland Brasiliens, z.B. westliches Bahia (Marinho et al., 1997), Pernambuco (Sanborn, 1930), Piauí (Olmos, 1995), Maranhão (de Oliveira, 1995), nördliches Minas Gerais (Fonseca et al., 1994).

Von Santa Cruz (Bol) und südlichem Mato Grosso (Br) nach Süden über den Chaco Paraguays und Norden Argentiniens bis Buenos Aires (Arg).

Genus Priodontes

Priodontes maximus: Tropische Wälder und offene Savannen (Redford und Eisenberg, 1992), xerophile Vegetation wie das *Impenetrable* (undurchdringbare Vegetation) im Chaco; weder über 500m.ü.M. noch in überflutbaren Gebieten (Chebez, 1994).
Östlich der Anden vom nordwestlichen Venezuela (Yaracuy) und Französisch Guyana nach Süden über das Amazonasbecken und Ausläufer der Anden in Kolumbien, Ecuador, Peru und Bolivien bis nordwestliches Argentiniens (Salta,
Formosa, Chaco, Santiago del Estero), Paraguay und südöstliches Brasilien (Rio Grande do Sul).

Das grosse Verbreitungsgebiet täuscht über die Seltenheit dieser Art hinweg: Während einer 18 Monate dauernden Expedition in Surinam wurden 650 Quadratmeilen intensiv nach Riesengürteltieren abgesucht und nur 7 Exemplare gefunden. In Espírito Santo (Br) ergab die Durchforschung von 16.7 km² Wald nur 3 Riesengürteltiere. Sein Hauptfeind ist der Mensch, der ihn wegen seines Fleisches oder seines Rufes als “eigenartiges Tier” oder “lebendes Fossil” verfolgt. Stirbt das Tier nicht schon beim Einfangen an den erlittenen Schlägen und Verletzungen, so verendet es oft auf dem Weg zum Zoo oder spätestens in demselben an Unterernährung (Chebez, 1994).

Genus Cabassous

Eher feuchte Gebiete mit gut drainiertem, lockerem Boden (Redford und Eisenberg, 1992); Grasland, Hochplateaus, entlang von Flussläufen, in feuchten Wäldern im Tiefland (Meritt, 1985b).

Cabassous tatouay: Lebt vermutlich überwiegend in offenem Gelände (Redford und Eisenberg, 1992).

Südöstliches Hochland Brasiliens, d.h. südliches Pará, Mato Grosso, Goiás, Minas Gerais, Espírito Santo, bis Rio Grande do Sul; Uruguay; östlich des Río Paraguay gelegenes südliches Paraguay; Misiones (Arg).

Cabassous chacoensis: Nur im trockenen Chaco.

Gran Chaco, ev. auch angrenzendes Mato Grosso do Sul (Br).

Cabassous centralis:

Chiapas (Mex) (Cuarón et al., 1989), südliches Belize, Izabal und Berge von Quiché (Gua); Honduras, Nicaragua, Costa Rica, Panama bis westlich der Anden gelegenes nördliches Venezuela.

Cabassous unicinctus: Sumpfgebiete.

Kolumbien, Ecuador und Venezuela bis Guyana, Surinam und Französisch Guyana; brasilianisches und peruanisches Amazonasbecken, von der

Genus Dasypus

Dasypus pilosus: Bergland Perus.

Dasypus kappleri: Östlich der Anden gelegene, bewaldete Regionen Kolumbiens, Delta des Orinoco und südlich des Orinoco gelegenes Venezuela bis Guyana, Surinam, Französisch Guyana; grösster Teil des Amazonasbeckens.

Dasypus septemcinctus: Vorliebe für Galeriewälder (M.L. Bolkovic, pers. Mitt.).
Von der Mündung des Amazonas-Flusses nach Süden über östliches Hochland Brasiliens bis Rio Grande do Sul (Br), im Westen bis Mato Grosso (Br); Gran Chaco.

Dasypus hybridus: Vorliebe für Grasland und Waldränder bis 2300 m.ü.M. Vom Chaco Argentiniens und vermutlich Paraguays über nordöstliches Argentinien bis Uruguay und Hochland von Rio Grande do Sul (Br), in Argentinien bis zum Río Negro.

2.9 Anatomie

In diesem Kapitel werden nur die anatomischen Besonderheiten der Gürteltiere behandelt.

2.9.1 Äußeres Erscheinungsbild

Der Panzer ist kein wirksamer Schutz gegen Feinde; beim Neunbinden-Gürteltier ist er nur 2 bis 3mm dick und kann von Hunden leicht durchgebissen werden. Er schützt hingegen hervorragend gegen dichtes, dorniges Gestrüpp, in welches das Gürteltier fliehen kann oder in welchem es auf Futtersuche geht (Redford und Eisenberg, 1992).

Genus Euphractus

Euphractus sexcinctus: 6 bewegliche Gürtel; Rand des blassgelben oder hellbraunen Panzers i.d.R. gezackt; 2 bis 4 Öffnungen im Beckenschild (Auszührungsgänge der Beckendrüsen); Kopfschild dreieckig; mit weissen Borsten behaart; Klauen der 2. und 3. Zehe der Vordergliedmassen etwa gleich lang, länger als die anderen Klauen; grosse Ohren; ZF 8-9/9-10. Grösse: KL um 45cm; Gewicht 3.5 bis 5kg (Merrett, 1983).

Genus Zaedyus

Zaedyus pichiy: 7 bis 9 oder noch mehr hellbraune oder fast schwarze Gürtel; Knochenplättchen am Rand des Panzers spitz zulaufend; keine Beckendrüsen im Beckenschild; ziemlich stark mit braunen Borsten behaart, ausser an haarlosem Schwanz; ZF 8/9. Grösse: KL um 27cm.
Genus Chaetophractus
Panzer eher breit und flach; 7 bis 9 oder noch mehr bewegliche Gürtel, wobei auch die Knochenplättchen auf Schulter- und Beckenschild bandförmig angeordnet sind; Beckendrüsen im Beckenschild; ZF 9/10.

Chaetophractus vellerosus: Panzer dunkel- und hellbraun gescheckt; ziemlich stark mit braunen Borsten behaart; relativ grosse Ohren. Grösse: KL um 23cm; Gewicht um 0.85kg.

Chaetophractus nationi: Panzer braun; dicht oder spärlich mit bis zu 72mm langen, blassen Borsten behaart. Grösse: KL um 27cm.

Chaetophractus villosus: Spärlich mit langen, schwarzen und braunen Borsten behaart (bei Tieren mit Grabenfähigkeit oft abgeschabt; eig. Beob.). Grösse: KL um 33cm; Gewicht 2.5 bis 3kg (Merrett, 1983).

Genus Chlamyphorus

Chlamyphorus truncatus: Weisslich-rosafarbener Rückenschild aus 24 quer verlaufenden Gürteln, nur an medianer Rückenlinie mit dem Körper verbunden; knöcherner Beckenschild am Becken befestigt und senkrecht zur Körperachse verlaufend; kurzer, spatelförmig endender Schwanz; Bauch und seitliche Körperoberflächen (auch unter dem lockeren Panzer) von dichten, langen, seidigen, weissen Haaren bedeckt; kräftige Pfoten, lange Krallen; keine Ohrmuscheln; ZF 7-8/8. Grösse: KL um 13cm; Gewicht um 120g (Meritt, 1985a).

Burmeisteria retusa: Ähnlich wie *C.truncatus*, aber grösser; seitliche Flächen des goldgelben Rückenschilds mit Körper verbunden; Bauch und seitliche Körperoberflächen von dichten, langen, seidigen, grauweissen Haaren bedeckt. Grösse: KL um 16cm; Gewicht um 100g.
Genus **Tolypeutes**
Panzer sehr hart und stark konvex; Schulterschild oval; 2 oder 3 bewegliche Gürtel; kann sich zu einer Kugel zusammenrollen, wobei Kopf- und Schwanzschild nebeneinander zu liegen kommen und die verbleibende Öffnung der Kugel verdecken; tympanischer Ring statt Bulla tympanica.

Tolypeutes tricinctus: 5 Zehen an Vordergliedmassen; ZF 8/9. Grösse: Gesamtlänge (inkl. Schwanz) um 27cm.

Tolypeutes matacus: 3 oder 4 Zehen an Vordergliedmassen; ZF 9/9. Gesamtlänge (inkl. Schwanz) um 30cm; Gewicht um 1.5kg.

Genus **Priodontes**
Priodontes maximus: Größtes der heute noch lebenden Gürteltiere. Dorsum dunkelbraun, Rand des Panzers hell; 11 bis 14 eng aneinanderliegende Gürtel mit in Größe und Form uniformen Knochenplättchen; Vordergliedmassen stark modifiziert: grosse sichelförmige Klauen, grösste an 3. Zehe; ZF 18/19, sehr variabel; tympanischer Ring statt Bulla tympanica. Grösse: KL um 90cm, Schwanzlänge um 53cm; Gewicht 30 bis 50kg.

Genus **Cabassous**

Cabassous tatouay: Grosse, trichterförmige Ohren. Grösse: KL 41 bis 49cm; Gewicht um 6.2kg.
Cabassous chacoensis: Sehr kurze, am anterioren Rand fleischige Ohren; anterio-posterior komprimierte Zähne. Grösse: KL um 30cm.

Cabassous centralis: Grösse: KL 34cm bis 42cm (Carrillo und Wong, 1992); Gewicht um 3kg.

Cabassous unicinctus: Kopf breiter als andere Cabassous-Arten. Grösse: KL um 39cm; Gewicht um 3kg.

Genus Dasypus
Panzer weich und hochgewölbt; dermale und knöcherne Plättchen der Gürtel nicht symmetrisch aufeinanderliegend; Knochenplättchen rechteckig, darauffliegende Hornplättchen dreieckig, wobei die nach kaudal zeigenden Dreiecke zwei Knochenplättchen überspannen und von nach kranial zeigenden dreieckigen Hornplättchen eingerahmt sind; Knochenplättchen des Schulter- und Beckenschilds rosettenförmig; Schwanz an proximalen 2/3 von knöchernen Ringen umfasst, Spitze schmal; 4 Zehen an Vordergliedmassen ausser *D.kappleri*, das eine rudimentäre 5. Zehe aufweist; tympanischer Ring statt Bulla tympanica; langes, schmales Rostrum; Mandibula schmal; ein thorakales und ein inguinales Zitzenpaar.

Dasypus pilosus: Ähnlich *D.novemcinctus*; 10 - 12 bewegliche Gürtel; Bauch und Rücken von dichtem, langem, hellbraunem Haar bedeckt; Schwanz ca. 70% der KL. Grösse: KL um 44cm.

Dasypus kappleri: 7 bis 9 bewegliche Gürtel; Kopfschild trapezförmig; 2 oder 3 Reihen harter Knochenplättchen am Knie; kleine Ohren; Schwanz fast gleich lang wie KL; ZF 8-9/8. Grösse: KL um 54cm; Gewicht um 9.7kg.

Dasypus novemcinctus: 8 bis 11 (i.d.R. 8 oder 9) bewegliche Gürtel; 4. Gürtel mit 54 - 64 Knochenplättchen; Kopfschild trapezförmig; Ohren 40 - 50% der Kopflänge; Schwanz ≥ 70% der KL; ZF i.d.R. 8/8. Grösse: KL 36 bis 57cm, nördliche Exemplare grösser als südliche; Gewicht 3 bis 8kg.
Dasypus septemcinctus: 6 bis 7 (8) bewegliche Gürtel; 4. Gürtel mit 46 Knochenplättchen; Kopfschild trapezförmig; Ohren 40 - 50% der Kopflänge; Schwanz > 55% der KL; ZF 6/8. Grösse: KL um 26cm; Gewicht um 1.4kg. (kleiner als *D.sabanicola* und *D.hybridus*, aber mit längeren Ohren)

Dasypus sabanicola: 8 bewegliche Gürtel; 4. Gürtel mit 43 - 62 Knochenplättchen; Kopfschild trapezförmig; Schwanz > 65% der KL. Grösse: KL um 29cm; Gewicht um 1.5kg. (mehr Gürtel als *D.septemcinctus* und *D.hybridus*)

Dasypus hybridus: 6 bis 7 (8) bewegliche Gürtel; 4. Gürtel mit 43 - 62 Knochenplättchen; Kopfschild trapezförmig; Ohren 25 - 33% der Kopflänge; Schwanz > 55% der KL; Bauch grau bis rosa; ZF i.d.R. 6/8. Grösse: KL um 30cm; Gewicht um 2kg. (etwas grösser als *D.sabanicola*)

Dasypus yepesi: 7 bis 9 bewegliche Gürtel; 4. Gürtel mit 51 - 63 Knochenplättchen; laterale Anteile des Panzers heller; Ohren 48 - 54% der Kopflänge; Schwanz > 70% der KL; ZF 7-8/8. Grösse: KL um 32cm. (etwas grösser als *D.hybridus*, bedeutend kleiner als *D.novemcinctus*)

2.9.2 Skelett
2.9.2.1 Axialskelett

Das Skelett der Gürteltiere weist mehrere Besonderheiten auf:
Der Ordnungsname *Xenarthra* deutet auf die xenarthrischen, d.h. mit zusätzlichen intervertebralen Gelenken ausgestatteten Wirbel hin. Diese finden sich nur an den hinteren Thorakal- und den Lumbalwirbeln. Die zusätzlichen Gelenke verbinden jeweils den Processus accessorius eines Wirbels mit der lateralen Fläche des Processus mammilarius und der dorsalen

Als weiteres Kennzeichen von grabenden Tieren ist bei Gürteltieren eine kräftige Klavikula ausgebildet (Owen, 1830-1831).

Die Gelenksflächen der Schwanzwirbel greifen fest ineinander. Zusammen mit den kräftig ausgebildeten Procc. transversi ermöglichen sie den Gürteltieren, ihren Schwanz ähnlich eines Känguruhs als Stütze zu verwenden, wenn sie sich beispielsweise zum Öffnen eines Termitenhügels auf die Hinterläufe stellen (Kühlhorn, 1938).

Die Anzahl Lumbalwirbel variiert je nach Art und teilweise auch innerhalb derselben. Während Tiere des Genus Dasypus 5 Lumbalwirbel aufweisen, hat Priodontes maximus nur deren drei oder vier, was letzterem eine höhere Stabilität beim Aufrichten auf die Hintergliedmassen gibt. Bei anderen Arten sollen nur 3 Lendenwirbel ausgebildet sein (Kühlhorn, 1938). Die Angabe einer genauen Anzahl Lendenwirbel ist insofern schwierig, als dass einige

Neben dem Foramen obturatum ist auch ein Foramen sacroischadicum zu erkennen. Da bei Chlamyphorus truncatus der mit dem Becken verbundene Beckenschild die Geburtswege stark einengt, vereinigen sich die Ossa pubis bei dieser Art nicht zu einer Symphyse (Minoprio, 1945).

Das Akromion und der Processus coracoideus der Scapula sind sehr stark ausgebildet (Glass, 1985). Eine zweite Spina scapulae gibt dem für die Grabebewegung wichtigen M. triceps eine zusätzliche Ursprungsfläche (Kühlhorn, 1938; Galbreath, 1982). Sie hat sich bei nicht grabenden Arten zurückgebildet, ist aber bei allen erkennbar (Scillato-Yané et al., 1999).

Am Femur ist ein prominenter Trochanter tertius ausgebildet. Tibia und Fibula sind proximal und distal miteinander verschmolzen und bilden den Ansatzpunkt für kräftige Muskeln (Kühlhorn, 1938; Fariña und Vizcaíno, 1997).

Aufgrund allometrischer Untersuchungen wurde festgestellt, dass Humerus, Ulna und teilweise auch Tibia wie bei grabenden Säugetieren ausgebildet sind (Fariña und Vizcaíno, 1997). So ist zum Beispiel das Olekranon sehr lang und bietet dadurch dem kräftig ausgebildeten Trizeps eine grosse Ansatzfläche. Im Gegensatz zu anderen grabenden Säugern gleicht der Femur in seinen Massen hingegen dem anderer, nicht unterirdisch lebender Säugetiere. Dies lässt sich dadurch erklären, dass Gürteltiere zwar Höhlen...

2.9.2.2 Schädel

Bei *Chaetophractus villosus* (möglicherweise auch bei anderen Arten) sind die Schädel der Weibchen signifikant größer als diejenigen der Männchen (Squarcia et al., 1994).

Die Gürteltiere der Genera *Dasypus*, *Tolypeutes*, *Priodontes* und *Cabassous* weisen statt einer Bulla tympanica und eines äusseren knöchernen Gehörgangs einen *tympanischen Ring* auf (Wetzel, 1985a).

2.9.2.3 Zähne

Allgemeine Informationen

2.9.3 Kreislaufsystem

Die A. carotidea interna ist grösstenteils verantwortlich für die Blutzufuhr zum Gehirn und wird dabei durch das gut entwickelte vertebral-basilare System unterstützt. Eine Besonderheit der Xenarthen findet sich im cephalischen Arteriensystem, bei dem drei Anastomosen ausgebildet sind:

3) Zwischen der A. occipitalis und dem R. supraorbitalis. Über diese sehr spezifische, nur bei Xenarthen anzutreffende Anastomose versorgt die A.
carotidea externa auch die Dura und trägt zur Durchblutung des extrabulbären Anteils der Orbita bei. Da dank dieser Verbindungen die Durchblutung der stapediaalen Region durch Zweige der A. carotis externa gewährleistet ist, obliterierte die A. stapedia (Bugge, 1979).

In den Extremitäten sind sogenannte retia mirabiles angelegt, d.h. diffuse Gefässgeflechte, welche wenige Anastomosen bilden (Hyrtl, 1854; Wislocki und Straus, 1933; Barnett et al., 1958). Diese tragen durch einen countercurrent-Mechanismus dazu bei, die zentrale Körpertemperatur zu erhalten (Johansen, 1961).
Für Säugetiere ungewöhnlich ist auch, dass die V. postrenalis paarig angelegt ist (Barnett et al., 1958; Galbreath, 1982).

2.9.4 Innere Organe und Weichteile

2.9.4.1 Lymphknoten
Als wichtigste Lymphknoten sind zu erkennen:

- **Lnn. cervicales superficiales**: 2 auf jeder Seite, rostral der Gl. salivaris cervicalis und kaudal der Gl. submandibularis. Rundlich und mit einem Durchmesser von 2 - 5mm bei D.hybridus, ovoid und 2cm lang bei D.novemcinctus.

- **Lnn. submandibulares**: Zwischen dem kranialen Pol der Gl. submandibularis und dem kaudalen Pol der Gl. parotidea, mit einem Durchmesser von 5mm bei D.novemcinctus.

- **Lnn. cervicales profundi**: Lateral des Ösophagus über dem Canalis cervicalis aufgereiht. Rundlich und mit einem Durchmesser von 2 - 3mm bei D.hybridus, ovoid und 1cm lang bei D.novemcinctus.
• **Lnn. tracheobronchiales**: 3 - 4 in einer Reihe im kaudalen Mediastinum, in der Nähe der Bifurkation der Trachea. Unregelmäßige Form mit einem Durchmesser von 1 - 3mm.

• **Lnn. axillares**: 1 oder 2 auf jeder Seite, in der Axilla. Ellipsoid, mit einem Durchmesser von 5 - 10mm bei *D. hybridus*, 2.2cm lang und 0.7cm breit bei *D. novemcinctus* (Gauna-Añasco und von Lawzewitsch, 1990).

• **Lnn. inguinales**: 2 - 3 pro Seite, ellipsoid und mit einem Durchmesser bis 15mm bei *D. hybridus*; 6 - 8 mittlerer Größe bei *D. novemcinctus*.

• **Lnn. mesenteriales**: Lange Reihe entlang der Gefässe des Mesenteriums. Mit einem Durchmesser von 1 - 5mm bei *D. hybridus* und im Durchmesser 5 - 15mm bei *D. novemcinctus*, gräulichweiss.

• **Weitere Lnn.**: Bei *D. novemcinctus* am kaudalen Rand der Scapula, unter M.latissimus dorsi; ellipsoid bis ovoid, bis 1cm gross (Gauna-Añasco und von Lawzewitsch, 1990).

2.9.4.2 Milz

Auch bei adulten Tieren dominieren in der Milz differenzierte Zellen der erythropoetischen Reihe, was darauf hinweist, dass dieses Organ während des ganzen Lebens hämatopoetische Funktionen hat (Galindez et al., 1997).

2.9.4.3 Gehirn

2.9.4.4 Drüsen

Auf die Bedeutung der Harderschen Drüse zur Melatoninproduktion wurde im vorherigen Kapitel hingewiesen.

Weitere bei Dasypodidae ausgebildete Drüsen finden sich an Ohren, Augenlidern und Fusssohlen (Brown, 1985).

2.9.4.5 Verdauungsapparat
Die lange, wurmförmige Zunge und der visköse, sialinsäurereiche Speichel ermöglichen die Aufnahme einer genügend grossen Biomasse Termiten oder Ameisen. Der Speichel wird von den grossen Glandulae mandibulares, der Parotidea und der Glandula sublingualis produziert. Wie bei den
Ameisenbären kann der Speichel in einer von quergestreifter Muskulatur umgebenen Blase gespeichert werden, welche im Ausführungsgang der UnterkieferSpeicheldrüse ausgebildet ist (Cuba-Caparó, 1979; Rossoni et al., 1981).

2.9.4.6 Geschlechtsorgane

Folgende akzessorische Geschlechtsdrüsen sind beim Gürteltier ausgebildet:

- Die **Prostata** wird von zwei voneinander unabhängigen, länglichen, dorsoventral abgeplatteten kompakten Massen gebildet, welche peripher zum M. urethralis am Blasenhals liegen und die ventrolaterale Fläche der

- Die **Samenblasendrüsen** weisen die Form einer Blase mit glatter Oberfläche auf und konvergieren nach kaudal zur dorsolateralen Oberfläche des Beckenteils der Urethra. Ihre Ausführungsgänge münden unabhängig von den Samenleitern in die Urethra (Glover, 1963; Cardoso et al., 1985). Bei voller sekretorischer Aktivität liegen die Samenblasen lateral der Blase und sind gefüllt mit pastösem, durchscheinendem Sekret. Bei reduzierter Aktivität verringern sich ihre Länge und ihr Durchmesser beträchtlich, so dass die Drüsen ihren Kontakt zur Blase verlieren.

2.10 Physiologie

2.10.1 Hämatoologie

Die Hämatoologie- und Blutchemiewerte sind in Tabelle 5 bzw. Tabelle 6 zusammengefasst.

2.10.2 Körpertemperatur

Ein wesentlicher Unterschied zu anderen Säugetieren ist die relativ tiefe Körpertemperatur und die verminderte Fähigkeit, diese konstant zu halten. Die in Tabelle 7 auf Seite 124 angegebenen Werte der Rektaltemperatur täuschen über die teilweise massiven Variationen im Laufe des Tages bzw. bei sich ändernder Umgebungstemperatur hinweg, welche bis zu 15ºC betragen können.

Gemäss Burns et al. (1971) lässt sich bei der Körpertemperatur von *Dasypus novemcinctus* ein signifikanter Unterschied zwischen Männchen (31 - 35ºC; ∅ 33.4ºC) und Weibchen (30 - 33ºC, ∅ 31.3ºC) feststellen.

Variation im Lauf des Tages

Temperaturregulation bei sich ändernder Umgebungstemperatur

Bei allen untersuchten Arten fallen die grossen Schwankungen der Körpertemperatur bei nicht idealer Aussentemperatur auf. Um trotz ihrer inkompletten Homöothermie in ihrem i.d.R. warmen Habitat überleben zu können, müssen die Gürteltiere ihre Lebensform und ihr Verhalten anpassen (Roig, 1969). In freier Wildbahn schützen sich Gürteltiere vor starken Temperaturschwankungen, indem sie sich im Sommer während des wärmsten Tagesabschnitts in ihrem unterirdischen Bau aufhalten bzw. in der kalten Jahreszeit tagsüber auf Futtersuche gehen und die kühleren Nachttemperaturen verschlafen. *Zaedyus pichiy* und *Chlamyphorus truncatus* scheinen am empfindlichsten zu sein gegenüber plötzlichen Temperaturschwankungen. Wildlebende Exemplare dieser Arten zeigen ein aussergewöhnliches Verhalten, wenn sie bei starker Sonneneinstrahlung aus ihrem schützenden Bau kriechen: Um sich an die im Vergleich zu ihrem Bau bis zu 20ºC höhere Aussentemperatur zu adaptieren, kommen sie mehrere Male aus dem Bau und verschwinden sogleich wieder in diesem, bevor sie endgültig an der Oberfläche bleiben (Roig, 1971).

Chaetophractus vellerosus und *Tolypeutes matacus* halten nach ausreichender Adaptationszeit ihre Körpertemperatur konstant bis zu einer Aussentemperatur von 5ºC, wohingegen *Cabassous sp.* dazu nicht in der Lage ist; bereits bei einer Aussentemperatur unter 15ºC fällt dessen Rektaltemperatur (McNab, 1980).

Die Körpertemperatur steigt kurzfristig sogar um bis zu 3.5ºC, wenn die Aussentemperatur von 30ºC auf -10ºC gesenkt wird. Gleichzeitig steigt die

Bei einer schrittweisen Erhöhung der Aussentemperatur von 30 auf 42°C steigt die Rektaltemperatur von *D. novemcinctus* auf 40°C und die Herzfrequenz von 30/min auf fast 200/min an; das Tier beginnt zu hecheln, die periphere Vasodilatation lässt den Rückenpanzer rötlich erscheinen. Die letale Grenze scheint bei einer Rektaltemperatur von ca. 41°C zu liegen (Johansen, 1961; Mercer und Hammel, 1989).

2.10.3 Atmung

vielmehr in der Lage zu sein, die Luft zwischen den Erdpartikeln nutzen zu können. Dazu werden die Nüstern dank der im Kapitel “Anatomie” beschriebenen verhornten Epithelzapfen fast verschlossen und die Luft zwischen den Erd- und Staubpartikeln herausfiltriert. Die Körpertemperatur sinkt langsam um bis zu 2°C, vermutlich weil dabei der gesamte Metabolismus verlangsamt wird. Die Herzfrequenz wird innert 90 Minuten kontinuierlich von 180/min auf 120/min gedrosselt. Letzteres könnte mit dem Absinken der Temperatur zusammenhängen oder mit der quantitativen Veränderung der Blutgase, da eine mit einer Hyperkapnie verbundene Hypoxie eine Bradykardie zu induzieren vermag. Dank der Ausnutzung der Luft zwischen den Erdteilchen können sich Gürteltiere während längerer Zeit unter der Erdoberfläche aufhalten, ohne dabei eine übermässige Hypoxie und einen daraus folgenden Hirnschaden zu erleiden (Affanni et al., 1986; Affanni et al., 1987; Casanave und Affanni, 1995; Casanave et al., 1995). Dies ist besonders sinnvoll beim Graben oder bei einem Einsturz des Baus. Sie können aber auch bis zu 10 Minuten lang die Respiration anhalten. Während dieser Apnoe wird die Herzfrequenz gesenkt, und die Sauerstoffsättigung des arteriellen Bluts fällt rasch auf etwa 80%. Trotz starker Muskelaktivität während der Apnoe steigt der Laktat-Blutspiegel nur wenig an, was durch einen reduzierten Blutfloss zur Muskulatur bedingt sein könnte (Scholander et al., 1943). Der verminderte Sauerstoffverbrauch erklärt die beobachtete Fähigkeit der Gürteltiere, bis zu 10 Minuten lang unter Wasser zu schwimmen (Cuba-Caparó, 1979). Wie für ein grabendes Tier erwartet, haben die Erythrozyten von Gürteltieren eine hohe Affinität für Sauerstoff; folgerichtig ist der Sauerstoffverbrauch mit 3ml/min/kg sehr gering. Der langsame Metabolismus könnte eine physiologische Anpassung sein, um die Gefahr einer Hypoxie zu verringern, die aus der hohen Sauerstoffaffinität des Bluts und des niedrigen Sauerstoffverbrauchs resultiert (Dhindsa et al., 1971).
2.10.4 Metabolismus

Torpidität ist eine geringe Körpermasse, weshalb z.B. das deutlich schwerere Neunbinden-Gürteltier nicht dazu in der Lage ist (McNab, 1985).

2.10.5 Sinnesorgane

Das Auge von *Chlamyphorus truncatus* weist eine sehr grosse Linse auf, deren posteriore Oberfläche bedeutend stärker gekrümmt ist als die anteriore. Die Retina dieser Gürteltier-Art ist sehr stark pigmentiert. Aus diesen Befunden geht einerseits hervor, dass *C.truncatus* nur Helligkeitsunterschiede wahrnehmen kann. Andererseits hat sich *C.truncatus* dadurch an das unterirdische und nachtaktive Leben adaptiert, um bei starker und ungewohnter Sonneneinstrahlung nicht geblendet zu werden (Minoprio, 1945).

Der Geschmackssinn von Neunbinden-Gürteltieren unterscheidet sich von demjenigen anderer Säugetiere. Sie scheinen gegenüber dem “süß”-Geschmack (Saccharin und Sucrose) und 0.9-prozentigen Salzlösungen indifferent zu sein. Die Erwartung, dass sie auf Ameisensäure positiv reagieren würden, konnte nicht bestätigt werden. Obwohl Insekten den grössten Anteil ihrer Nahrung ausmachen und viel Ameisensäure enthalten, reagierten die Versuchstiere beim Vorsetzen einer 0.01N-Lösung mit einer Reduktion der Flüssigkeitsaufnahme (Maller und Kare, 1967).
2.10.6 Immunologie

2.10.7 Konzentrationskapazität der Nieren

2.11 Ernährung

2.11.1 Karnivoren - Omnivoren

Im Sommer ernährt sich *Chaetophractus vellerosus* fast zur Hälfte von Insekten, während es im Winter mehr pflanzliches Material (51%), vor allem Samenhülsen des *Prosopis*-Baums, Wurzeln und Knollen aufnimmt; der Insektenanteil beträgt dann nur ca. 26% (Gregor, 1980a; Bruno, 1999). Einen weiteren signifikanten Anteil seiner Diät machen Vertebraten wie Vögel, Mäuse, Eidechsen und Froschlurche aus. Im Sommer erreicht der Volumenanteil von Vertebraten 20% des gesamten Mageninhalts, im Winter 9.2%. Dieser Unterschied könnte auf eine verringerte Aktivität und reduzierte Anzahl von Wirbeltieren während der kalten Jahreszeit zurückzuführen sein (Gregor, 1980a). Auch Aas wird nicht verschmäht. Beim Fressen nimmt *Chaetophractus vellerosus* viel Sand auf; dieser kann bis zu 50% des Mageninhalts ausmachen. Im Winter sind die Tiere bis zu 10% schwerer durch die Anlagerung einer ein bis zwei Zentimeter dicken subkutanen Fettschicht (Redford und Eisenberg, 1992).

weitverbreitete Meinung, dass das Braunhaar-Gürteltier mit Vorliebe auf Friedhöfen lebt und ein gefährlicher Krankheitsüberträger ist, welcher bekämpft werden muss (eig. Beob.).

2.11.2 Opportunistische Insektivoren

Zu dieser Gruppe werden *Chlamyphorus*, *Tolypeutes* und *Dasypus* gezählt.

Tolypeutes matacus ernährt sich überwiegend von Ameisen und Termiten, verschmäht aber auch andere weiche Invertebraten, Aas, Pflanzensamen und Früchte nicht (Redford und Eisenberg, 1992; Bolkovic et al., 1995; Bruno, 1999). Bei Untersuchungen des Mageninhalts von Kugelgürteltieren machten die Invertebraten 70% des Gewichts aus. Es wurden nur intakte Futterstücke gefunden, was darauf hinweist, dass Kugelgürteltiere ihr Futter nicht kauen (Bolkovic et al., 1995).

Dasypus-Arten sind primär Insektivoren, die je nach Verfügbarkeit ihrer Hauptnahrungsquelle auch kleine Vertebraten und Früchte fressen (Redford und Eisenberg, 1992). Tiere der Gattung *Dasypus* bewegen sich bei der Futtersuche recht schnell und spüren ihr Futter hauptsächlich dank ihres gut ausgebildeten Geruchssinns auf. Sie schnüffeln ununterbrochen und graben flache Mulden, um die Insekten aufzuspüren. Oftmals werden auch Ameisen- oder Termitenhügel aufgerissen oder die Rinde von umgestürzten Bäumen
weggekratzt, um die darunterlebenden Insekten zu fressen (Breece und Dusi, 1985).

Im Magen von venezolanischen Dasypus kappleri dominierten Käfer, gefolgt von anderen Insektenarten, weiteren Invertebraten und anorganischem Material. Im Gegensatz zu anderen Arten scheinen die Kappler-Gürteltiere keine Präferenz für Ameisen und Termiten zu haben. Sie könnten als opportunistische Fresser mit Vorliebe für Käfer (Coleoptera) bezeichnet werden (Szeplaki et al., 1988).

einer Murmel. Bei genauerer Betrachtung sollen nicht verdaute Chitinpanzer, Antennen, Beine und andere Anteile aufgenommener Insekten erkennbar sein.

Auch im Magen von *Dasypus hybridus* wurden hauptsächlich Ameisen und Termiten gefunden (49% bzw. 9%), ausserdem weitere Invertebraten und junge Mäuse (Barlow, 1965).

2.11.3 Überwiegende Insektivoren

Zu dieser Kategorie gehören *Priodontes* und *Cabassous*.

gemäß der Literatur die Aufnahme von Futter, welches gekaut werden muss, was als weiterer Hinweis auf seine Spezialisierung als Myrmecophage gedeutet werden kann (Redford, 1985). Eigene Beobachtungen an Riesengürteltieren in Menschenobhut widersprechen jedoch der Aussage Redfords: Die Tiere frassen neben ihres suppengig Futters auch die angebotenen Fleischstückchen gierig und problemlos.

2.12 Reproduktion

Wo nicht anders vermerkt, beziehen sich die Angaben in diesem Kapitel auf *Dasypus novemcinctus*, da der größte Teil der Untersuchungen zur Reproduktion von Gürteltieren an dieser Art vorgenommen wurde. Die Daten bezeichnen die Verhältnisse auf der Nordhalbkugel. Auf der Südhalbkugel sind Paarungszeit, Geburtssaison etc. entsprechend um 6 Monate verschoben.

2.12.1 Männliche Tiere

Saisonale Schwankungen konnten auch bei der Aktivität der akzessorischen Geschlechtsdrüsen nachgewiesen werden. Die histologischen Veränderungen und Gewichtsunterschiede zeigten sich am ausgeprägtesten bei den Samenblasendrüsen, während sie bei den Bulbourethraldrüsen nicht signifikant waren (Cardoso et al., 1985).

Spermien
2.12.2 Weibliche Tiere: Zyklus

Bei *Chaetophractus villosus* (und anderen Arten?) ist eine präovulatorische Blutung feststellbar (eig. Beob.).

2.12.3 Verzögerte Implantation

Üblicherweise erfolgt die Implantation im November und ermöglicht nach einer Tragzeit von etwa 120 Tagen die Geburt in einer für die Aufzucht günstigeren Jahreszeit, meist Ende März oder Anfang April (Sandell, 1990;

Bei welchen weiteren Arten eine verzögerte Implantation vorkommt, ist nicht bekannt. Möglicherweise ist sie die Regel bei allen Dasypus spp. und könnte auch bei Tolypeutes auftreten.
2.12.4 Polyembryonie

Es kommt sehr selten vor, dass nur zwei oder drei Junge geboren werden. In solchen Fällen lässt sich aber meist nachweisen, dass die restlichen der vier angelegten Embryonen resorbiert wurden. Noch seltener ist eine höhere Anzahl Junger. In zwei Studien mit gesamthaft 360 trächtigen Tieren konnten nur in einem Fall 6 normal entwickelte und ein rudimentärer siebter Embryo gefunden werden (Buchanan, 1957).

Der Sinn der Polyembryonie liegt im Dunkeln. Sie ist eine umständliche Art der Weitergabe der eigenen Gene, da sie weder von den Vorteilen der sexuellen noch der asexuellen Reproduktion profitieren kann. Bei der sexuellen Reproduktion werden genetisch unterschiedliche Nachkommen
gezeugt, von denen einige sich besser an die Umgebungsbedingungen
adaptieren können – womit die Chance einer Weitergabe der Gene erhöht
wird –, wohingegen bei der Polyembryonie nur ein Genotyp generiert wird. Bei
der Parthenogenese liegen die Vorteile in der raschen Replikation eines
erfolgreichen Genotyps, nämlich demjenigen der Mutter. Polyembryonische
Arten können von diesem Vorzug nicht profitieren, weil die Nachkommen
sexuell gezeugt werden; dies bedingt, dass das Genom einer gut adaptierten
Mutter unweigerlich mit demjenigen eines Männchens vermischt und ihr
Überlebensvorteil nur zur Hälfte an den Nachwuchs weitergegeben wird.
Weshalb also die Polyembryonie? Eine bei Säugetieren in Frage kommende
Antwort ist das altruistische Verhalten, welches den Verlust eines Tiers zur
Rettung eines anderen bewirkt. Die “Selbstopferung” macht aber nur einen
Sinn, wenn die eigenen Gene trotzdem weitergegeben werden können, wie
dies bei genetisch identischen Tieren der Fall ist. Polyembryonische Arten,
welche genetisch identische Nachkommen produzieren, wären deshalb
geradezu prädestiniert für den Altruismus. Wie Loughry und McDonough
(1994) nachweisen konnten, sind junge Neunbinden-Gürteltiere in der Lage,
ihre Geschwister von nicht verwandten Tieren zu unterscheiden. Allerdings
bestand kein signifikanter Unterschied zwischen dem Verhalten gegenüber
verwandten und unbekannten Jungtieren, wie er beim altruistischen Verhalten
zum Schutz von Wurfgeschwistern zu erwarten gewesen wäre. Dass sich
dieses erst bei Adulten zeigt, ist aufgrund von Populationsuntersuchungen
wenig wahrscheinlich. Unter 200 mittels Mikrosatelliten-DNA-Markern
untersuchten Tieren waren nur 8 Geschwisterpaare, welche jeweils mehr als
450m auseinander eingefangen wurden – es bestand also wenig Chance auf
eine Interaktion zum Schutz der Wurfgeschwister (Loughry et al., 1998b). Die
beste Erklärung für die Polyembryonie liefert uns Galbreath (1985). Seine
Theorie basiert auf der ungewöhnlichen Uterusform von Dasypus
novemcinctus und der aussergewöhnlich kleinen Implantationsstelle, welche
nur einer Blastozyste Platz bietet. Er vermutet, dass die Polyembryonie sich
* verzögerte Implantation
1 Gemäss der Literatur im Januar und Februar; laut anderen Quellen Oktober bis Dezember oder Januar (W.Correa, P.Cetica, pers. Mitt.).

<table>
<thead>
<tr>
<th></th>
<th>Geschlechtsreife</th>
<th>Decksaison</th>
<th>Tragzeit</th>
<th>Wurfsaison in Wildnis</th>
<th>Anzahl Junge</th>
<th>Geburtsgewicht oder -grösse</th>
<th>Säugezeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamyphorus truncatus</td>
<td>2</td>
<td>3 bis 4 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolypeutes matacus</td>
<td>9 - 12 Monate</td>
<td>104 - 116 Tage</td>
<td>Okt. - Jan.</td>
<td>1</td>
<td>70 - 100g</td>
<td>10 Wochen</td>
<td></td>
</tr>
<tr>
<td>Priodontes maximus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 - 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabassous spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>100 - 115g</td>
<td></td>
</tr>
<tr>
<td>Euphractus sexcinctus</td>
<td>9 Monate</td>
<td>ganzes Jahr?</td>
<td>60 - 65 Tage</td>
<td>ganzes Jahr?</td>
<td>1 - 3</td>
<td>95 - 115g</td>
<td>1 Monat</td>
</tr>
<tr>
<td>Chaetophractus villosus</td>
<td>9 Monate</td>
<td>Winter/Frühling</td>
<td>68 Tage</td>
<td>Okt. - Dez.</td>
<td>meist 2</td>
<td>86 - 115g</td>
<td>55 Tage</td>
</tr>
<tr>
<td>Chaetophractus nationi</td>
<td>9 - 12 Monate?</td>
<td></td>
<td></td>
<td>Sommer</td>
<td>1 - 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetophractus vellerosus</td>
<td>9 - 12 Monate?</td>
<td>Sept. – Okt.</td>
<td></td>
<td>Nov. - Feb.?</td>
<td>2</td>
<td>50 - 60g</td>
<td></td>
</tr>
<tr>
<td>Zaedyus pichiy</td>
<td>9 - 12 Monate</td>
<td>Aug. – Okt.</td>
<td>60 Tage</td>
<td>Okt. - Dez.</td>
<td>1 - 3</td>
<td>95 - 115g</td>
<td>6 Wochen</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>2</td>
<td>15 Monate</td>
<td>Sommer*</td>
<td>ca. 140 Tage</td>
<td>4</td>
<td>85g</td>
<td>3 Monate</td>
</tr>
<tr>
<td>Dasypus hybridus</td>
<td>15 Monate</td>
<td>März*</td>
<td>Okt. - Dez.</td>
<td>8 - 12</td>
<td>40 - 45g</td>
<td>2 Monate</td>
<td></td>
</tr>
<tr>
<td>Dasypus sabanicola</td>
<td>2</td>
<td>April / Mai*</td>
<td>Aug. / Sept.</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dasypus septemcinctus</td>
<td>6 - 12 Monate</td>
<td>ca. 140 Tage</td>
<td></td>
<td>4 / 8 / 12?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dasypus kappleri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Ausser bei D.sabanicola alle Angaben für Bewohner der südlichen Hemisphäre; bei D.novemcinctus für Tiere beider Hemisphären.

(Quellen: Minoprio, 1945; Asdell, 1964; Pacheco und Naranjo, 1978; Wetzel und Mondolfi, 1979; Galbreath, 1982; Grzimek, 1988; Redford und Eisenberg, 1992; Sassaroli, 1995; Sassaroli, 1996; W.Correa, pers. Mitt.)
entwickelte, um diese anatomi sch bedingte Limitierung des Nachwuchses zu kompensieren (Loughry et al., 1998b).
Sowohl die verzögerte Implantation als auch die Polyembryonie mit Geburt von Vierling en wurden auch bei Dasypus sabanicola beobachtet (Pacheco und Naranjo, 1978).

2.12.5 Plazentation

Die Nabelschnur erreicht 18 bis 20 cm Länge und weist einen Durchmesser von 1 cm auf. Sie enthält zwei Nabelarterien und zwei Venen (Benirschke et al., 1964).
Im letzten Drittel der Trächtigkeit sind hauptsächlich die Feten für die Progesteronproduktion verantwortlich. Die Entwicklung der Nebennieren ist mit derjenigen beim Menschen vergleichbar: Sie sind beim Feten überdurchschnittlich groß, erreichen ihre größte Ausdehnung um die Geburt (beim menschlichen Feten sind sie im vierten Schwangerschaftsmonat am größten) und verkleinern sich massive post partum (Moser und Benirschke, 1962; Nakakura et al., 1982). Kurz vor der Geburt sind die Nebennieren mehr als halb so gross wie die Nieren (eig. Beob.).

2.12.6 Entwicklung nach der Geburt

2.13 Ethologie

2.13.1 Fortbewegung
Neunbinden-Gürteltiere zeigen verschiedene Gangarten: einen schlurfenden Schritt, einen schweineähnlichen Trab und einen hoppelnden Galopp (Galbreath, 1982).
Beim Gehen die Krallenspitzen der Vordergliedmassen den Boden, während die Hintergliedmassen mit der ganzen Sohle flach aufgesetzt werden (Elliott, 1904).
Alle Gürteltiere stellen sich häufig auf die Hinterläufe und strecken die Nase in die Höhe, um in der Nähe lauernde Feinde oder Futter wittern zu können (Anderson und Benirschke, 1966).
Chlamyphorus truncatus bewegt sich langsam und schwerfällig und hinterlässt eine charakteristische Spur, die aus Pfotenabdrücken und einer
geschwungenen, vom nachgezogenen Schwanz gezeichneten Linie besteht (Minoprio, 1945).

2.13.2 Lautäußerung

2.13.3 Fluchtverhalten

Die Abwehrmechanismen sind so vielfältig wie die Gürteltier-Arten.

Auch *Chaetophractus villosus* drückt sich flach auf den Boden und verharrt unbeweglich, bis die Gefahr gebannt ist. Wird es verfolgt, so versucht es im Zickzack den Gegner zu verwirren und flieht in den nächsten Bau oder in dichtes Gestrüpp, wo es sich einzugraben versucht (eig. Beob.).

2.13.4 Graben

vertikalen Abschnitt beginnen und erst nach 10 bis 15cm in flacherem Winkel weitergeführt werden, was auf eine sehr harte obere Erdschicht zurückzuführen sein könnte (eig. Beob.). Kot wird immer ausserhalb des Baus abgesetzt (Merrett, 1983).

Der Bau eines *Euphractus sexcinctus* ist leicht zu erkennen am charakteristischen Eingang in Form eines umgekehrten U. Dieser ist um 20cm hoch und ca. 22cm weit. *Euphractus* benutzt im Gegensatz zu den meisten Gürteltier-Arten denselben Bau mehrmals (Carter und Encarnação, 1983).

Chaetophractus vellerosus gräbt Baue mit einem Durchmesser von 8 bis 15cm und mehreren Metern Länge. Mit Vorliebe werden sie in sandigen Böden angelegt, wobei sie bei eher lockerem, unzusammenhängendem Untergrund in der Nähe von Wurzeln und unter Büschen gehäuft sind. Dadurch soll Einstürzen der Tunnels vorgebeugt werden (Greegor, 1985). Mehrere Eingänge ermöglichen eine Luftzirkulation und lassen die Temperatur im Bau nicht zu stark ansteigen (Redford und Eisenberg, 1992). Anderen Beobachtungen zufolge werden die Gänge beim Graben durch das hinter dem Tier anfallende Material gleich wieder verschlossen, was die Erhaltung einer konstanten Temperatur und Luftfeuchtigkeit im Bau ermöglicht. Begünstigend für die Temperaturkontrolle dieser Wüstenvorhocker wirkt sich die grosse Tiefe ihrer Baue aus, welche fast 2 Meter erreicht. Mehrere untersuchte Baue lagen mit ihrer durchschnittlichen

Chlamyphorus truncatus beginnt mit der Nasenspitze zu graben und fährt dann mit den kräftigen Vordergliedmassen fort. Mit den Hintergliedmassen wird der Sand zur Seite und nach hinten gescharrt; zur Unterstützung der Vordergliedmassen können die Hinterbeine auch zum Graben eingesetzt werden. Der Beckenschild dient als Schutzwall, damit die abgetragene Erde nicht in die entstehende Höhle zurückfällt. Wenn das Tier sich bedroht fühlt, setzt es ihn als Schutzhülle ein, um den Eingang zum Bau zu versperren. Minoprio (1945) unterscheidet drei Typen von Höhlen:
1) eine kleine, die nur als vorübergehendes Versteck dient;
2) eine galerieartige mit einem Ein- und einem Ausgang, welche im Mittelstück von lockerem, beim Graben anfallendem Sand ausgefüllt ist;
3) das eigentliche Nest, d.h. eine erweiterte Kammer, zu der ein oder mehrere Eingänge führen. Die Eingänge werden jeweils mit Sand verschlossen.

Die Baue von *Cabassous spp.* sind leicht zu identifizieren. Aus ihren in offenen Gelände oder in Böschungen angelegten Eingängen entströmt ein
moschusartiger Geruch. Die Umgebung ist typischerweise frei von Vegetation, Kot und Schutt (Meritt, 1985b).

Cabassous tatouay gräbt in Südbrasilien seinen Bau in bewohnte Termitenhügel. Er weist nur einen, fast rechteckigen Eingang mit den Massen 22 x 16cm (Breite x Höhe) auf und wird nicht mehrmals benutzt (Carter und Encarnação, 1983).

Während *Dasypus novemcinctus* seinen Bau oft in Wäldern anlegt, bevorzugt *Dasypus hybridus* Grasland oder andere offene Vegetation. Die Baue von *Dasypus novemcinctus* können mehrere durch Baumwurzeln oder Steine geschützte, im Durchmesser ca. 20cm weite ovale Eingänge haben (Zimmerman, 1990). Ein bis 4.5m langer, oftmals verzweigter, gekrümmter

2.13.5 Schwimmen
Es ist unbestritten, dass Gürteltiere – ausser Cabassous spp. und Tolypeutes spp. (Krumbiegel, 1940) – sich gerne für kurze Zeit im Wasser aufhalten und in Menschenobhut eine Bademöglichkeit schätzen. Es bestehen jedoch widersprüchliche Meinungen über ihr Schwimmverhalten. Einige Forscher vertreten die Meinung, dass Dasypus novemcinctus unter Wasser gehen

Neunbinden- und Riesengürteltiere wälzen sich gerne im Schlamm; vermutlich werden damit Ektoparasiten bekämpft (Taber, 1945; Taulman, 1994, I.Rubiano, pers. Mitt.).

2.13.6 Aktivität

Im allgemeinen sind Gürteltiere eher nacht- oder dämmerungsaktiv, vor allem bei hohem Jagddruck. Sie kommen aber je nach Witterung auch tagsüber aus dem Bau. Bei kühlen Temperaturen wärmen sie sich gerne an der Sonne (Cuba-Caparó, 1976).

Euphractus sexcinctus ist hauptsächlich tagaktiv, kann aber auch nachts angetroffen werden (Redford, 1994).

Zaedyus pichiy wird am häufigsten um die Mittagszeit beobachtet (W.Correa, pers. Mitt.).

Chaetophractus vellerosus ist im Sommer nachtaktiv und im Winter tagaktiv (Redford und Eisenberg, 1992). Wenn es aus seinem Bau kommt, verbringt es die meiste Zeit auf Futtersuche und kann dabei über einen Kilometer in seinem 3.4ha grossen Revier zurücklegen (Gregor, 1980b). Der
Aktivitätsradius der Männchen scheint geringer zu sein als derjenige der Weibchen (D.Glaz, pers. Mitt.).

Chaetophractus villosus scheint in gewissen Regionen hauptsächlich nachtaktiv, in anderen hingegen tagaktiv zu sein. Dies könnte am unterschiedlichen Jagddruck liegen. Bei starkem Wind werden die Höhlen nicht verlassen (eig. Beob.; W.Correa, pers. Mitt.).

Der Tagesablauf von **Tolypeutes matacus** ist stark temperatur- und witterungsabhängig. Das Kugelgürteltier kann tag- oder nachtaktiv sein.

Auch **Cabassous sp.** verlässt seinen Bau kurz nach Sonnenuntergang und kehrt immer vor Sonnenaufgang zu ihm zurück. Hält sich ein Nacktschwanzzürteltier bei Tageslicht ausserhalb seines Baus auf, so entfernt es sich nicht weit von diesem (Meritt, 1985b).

Im Gegensatz zur letztgenannten Spezies ist *Dasypus sabanicola* in den venezolanischen Savannen tagaktiv. Der Grund dafür sind die konstanten Umgebungstemperaturen, welche nur wenig um das Jahresmittel von 27ºC fluktuieren (Pacheco und Naranjo, 1978).

Auch die Aktivitätszeit von *Dasypus hybridus* hängt von diversen äußeren Faktoren wie Temperatur und Jagddruck ab. In einem Schutzgebiet konnte diese Art im Frühling um die Mittagszeit beobachtet werden; in einer anderen Zone, in welcher sie gelegentlich gejagt werden, waren sie erst in der Dämmerung aktiv (eig. Beob.; W. Correa, pers. Mitt.). Bei der Futtersuche geht *D. hybridus* einige Schritte, schnüffelt nach Insekten, scharrt oberflächlich und geht wieder einige Schritte. Dabei werden die Ohren unablässig hin- und herbewegt (eig. Beob.).

2.13.7 Schlafen

der Erdoberfläche, ab und zu graben sie sich aber auch etwas ein, so dass nur ein kleiner Teil ihres Panzers aus der Erde schaut (Meritt, 1985a).

2.13.8 Sozialverhalten
fortpflanzungsfähigen Weibchen die Männchen zu verstärkter Aggression gegenüber möglichen Rivalen trieb.

Bei im Labor gehaltenen Chaetophractus villosus wurde beim Zusammenführen eines brünstigen Weibchens und eines Männchens beobachtet, wie die Tiere einander verfolgten, bestiegen oder auf den Rücken warfen. Die Tiere beschnupperten sich an Kopf, Beckendrüsen und Anus. Wurde ein weiteres Männchen hinzugefügt, so zeigte das erste Männchen ein deutliches Verteidigungsverhalten, indem es das neue Männchen angriff, sobald es sich dem Weibchen näherte (eig. Beob.).

2.13.9 Reproduktionsverhalten

2.14 Krankheiten

2.14.1 Verletzungen

2.14.2 Infektionen

Bei der Untersuchung der Nieren von 50 Neunbinden-Gürteltieren wiesen 34 (68%) morphologische Veränderungen verschiedener Art auf. Bei 32 Tieren (64%) wurde eine multifokale bis fokale, disseminierte, nicht-eitrige interstitielle Nephritis diagnostiziert, welche meist auf die Nierenrinde beschränkt und somit eher hämatogen bedingt war. 14 Nieren (28%) zeigten eine milde bis moderate periglomeruläre Sklerose und weitere 14 (28%) eine tubuläre Degeneration. Weitere erkannte Veränderungen umfassten multifokale interstitielle Mineralablagerungen (7 Tiere, 14%), milde lymphozytäre Infiltrationen der Submukosa des Nierenbeckens (5 Tiere, 10%) und chronische perirenale Fibrose und proliferative Endarteritis (2 Tiere, 4%). Weder Stickstoff- noch Kreatininwerte waren erhöht, d.h. die Infektionen waren subklinischer Natur. Die Ursache dieser Veränderungen konnte nicht festgestellt werden (Stuart et al., 1977). Die hohe Prävalenz an subklinischen Nephritiden sollte während der Quarantäne nicht ausser Acht gelassen und z.B. bei der Applikation von nephrotoxischen Medikamenten berücksichtigt werden. Tiere mit subklinischen Niereninfektionen könnten anfälliger sein für weitere Nierenveränderungen, die sich z.B. durch übermässige Proteinfütterung entwickeln.

2.14.2.1 Virale Infekte

Über virale Erkrankungen bei Gürteltieren liegen keine Berichte vor. Eine Untersuchung von 189 D.novemcinctus aus Florida auf Antikörper gegen das Eastern Equine Encephalitis-Virus verlief negativ, hingegen wiesen 59 (31%) neutralisierende Antikörper gegen das St. Louis Encephalitis-Virus (SLE-Virus) auf. Signifikant mehr positive Tiere wurden während oder kurz nach einer SLE-Epidemie eingefangen als vor dieser. Viren konnten aus keinem der seropositiven Tiere isoliert werden, was die Verfasser der Studie auf die späte Blutentnahme (teilweise Monate nach Einfangen) zurückführen. Die Gürteltiere wurden vermutlich durch Stechmücken infiziert und könnten eine Rolle spielen im Zyklus des SLE-Virus (Day et al., 1995).
2.14.2.2 Bakterielle Infekte

In Panama wurden einige mit *Borrelia recurrentis* infizierte Gürteltiere gefunden (Cuba-Caparó, 1979).

Subklinische Infektionen mit verschiedenen Serovaren von *Leptospira interrogans* konnten bei wildlebenden Populationen von *Dasypus novemcinctus* und *Chaetophractus villosus* festgestellt werden. In einer Untersuchung zeigten 11.3% der Neunbinden-Gürteltiere und 23% der Braunhaar-Gürteltiere eine Immunreaktion (Carillo et al., 1972; Motie et al., 1986).

Salmonellen: siehe Kapitel “Zoonosen“.

2.14.2.3 Mykosen

Paracoccidioides brasiliensis: Der Erreger der südamerikanischen Blastomykose wurde in 4 von 20 untersuchten Exemplaren von *Dasypus*

2.14.3 Parasiten

Ektoparasiten
Flöhe

Folgende Gattungen wurden bei Gürteltieren gefunden:
- *Tunga* (Pinto und Dreyfus, 1927; Jordan, 1934; Whitaker und Abrell, 1987)
- *Polygenis* (Storrs, 1971)
- *Malacopsylla* (Baker, 1905; Jordan, 1934; Mauri und Navone, 1993)
- *Phthiropsylla* (Mauri und Navone, 1993)

Mehrere Arten der ersten vier Gattungen parasitieren nur auf Gürteltieren.
- *Juxtapulex* (Storrs, 1971)
- *Echidnophaga* (Storrs, 1971)
- *Rhophalopsyllus* (Wells et al., 1981; Mauri und Navone, 1993)
- *Ctenocephalides* (Wolffhugel, 1920).

Zecken

- *Amblyomma auriculare* ist spezifisch für die *Dasypodidae* (Mauri und Navone, 1993).

Milben

- *Das cynonyssus neivae* scheint nur auf Gürteltieren vorzukommen (da Fonseca, 1940).
- *Ornithonyssus iheringi* (Mauri und Navone, 1993)
- *Androlaelaps fahrenholzi* (Mauri und Navone, 1993)
- *Sarcoptes scabiei* (Wolffhugel, 1920)

Endoparasiten

Endoparasiten, welche Arthropoden als Zwischenwirte benutzen (Chandler, 1946). In Kotproben von 96 Wildfängen von \textit{Dasypus novemcinctus} in den USA wurden keine Endoparasiten gefunden (Purtilo et al., 1975).

Wildfänge von \textit{Cabassous} scheinen häufig stark verwurmt zu sein mit Ascariden, Hakenwürmern und \textit{Strongyloides} (Meritt, 1985b).

Bei einer Sektion muss der "akzidentelle Parasitismus" bedacht werden. Ein Parasit kann auch im Gastrointestinaltrakt eines Gürteltiers gefunden werden, weil das Wirtstier des Parasiten, z.B. ein Insekt, von diesem gefressen wurde (G.Navone, pers. Mitt.).

Dass über 70\% der bei \textit{Ch.villosus} gefundenen Parasiten einen direkten Zyklus haben, könnte darauf hindeuten, dass diese Art eher herbivore Futterpräferenzen hat. Bei \textit{T.matacus} weist die Verwurmung eher auf eine herbivore und insektivore Diät hin, da Parasiten mit Zwischenwirten und solche mit direktem Zyklus etwa gleich häufig sind (G.Navone, pers. Mitt.).

Im allgemeinen ist nicht bekannt, ob die bei Wildtieren gefundenen Parasiten klinische Manifestationen auslösen können oder im Gleichgewicht mit ihren Wirten leben, ohne ihnen Schaden zuzufügen.

\textbf{Trematoda}

\textit{- Diverse Trematodenarten parasitieren im Pankreas von Gürteltieren (Ribeiro, 1941; Chandler, 1946; Storrs, 1971).}

\textbf{Cestoda}

Nematoda
Nematoden sind die am häufigsten bei Gürteltieren vorkommenden Helminthen, sowohl bezüglich der anzutreffenden Arten als auch der Anzahl pro Wirtstier (Talmage und Buchanan, 1954).
Eine natürliche Infektion mit Trichinen wurde bei Dasypus novemcinctus noch nie diagnostiziert, eine experimentelle Infektion von Chaetophractus villosus konnte jedoch erfolgreich durchgeführt werden (Niño, 1937).

- Cruzia spp.: Im distalen Dünndarm, Zäkum und Kolon (Khalil und Vogelsang, 1932b; Sprehn, 1932)

Enoplida
- Trichuris subspiralis (Diesing, 1861)

Ascaridida
- Ascaris (Bairdascaris) dasypodina: Spezifisch für Xenarthren; im Dünndarm, Kolon und Zäkum (Sprent, 1982; Fujita et al., 1995)
- Schneiderema (=Ascaris) retusa (Travassos, 1926; Araujo, 1940)
- Aspidodera spp. scheinen spezifisch für Dasypodiden zu sein; je nach Art im Kolon, Zäkum und / oder im Rektum (Railliet und Henry, 1914; Cavalcanti Proença, 1937; Chandler, 1946; Navone, 1986; Fujita et al., 1995; Suare et al., 1998).
- Heterakis fasciata (Schneider, 1866)

Spirurida
- Pterygodermatites chaetophracti: Dünndarmparasit (Navone und Lombardero, 1980; Navone, 1987a; Suare et al., 1998)
- Mazzia mazzia: Magenparasit (Khalil und Vogelsang, 1932a; Fujita et al., 1995)
- Mazzia bialata (Chabaud et al., 1983)
- Spirura guianensis: Magenparasit (Fujita et al., 1995).
Strongylida

Bei Kotuntersuchungen mehrerer Exemplare verschiedener Gürteltier-Arten wurde als einziger Hinweis auf Parasiten Eier von Ankylostomatiden gefunden (Opromolla et al., 1980).

- *Macielia* spp.: Spezifisch für Dasypodiden; je nach Art in Magen oder Darm (Travassos, 1937; Durette-Desset, 1970; Navone, 1987b; Suare et al., 1998)
- *Moennigia* spp.: Dünndarmparasiten von Gürteltieren, Ameisenbären und Beuteltieren (Travassos, 1935; Durette-Desset, 1970; Navone, 1987b; Fujita et al., 1995; Suare et al., 1998)
- *Delicata (=Ostertagia)* spp. (Travassos, 1921; Travassos, 1935)
- *Trichohelix tuberculata*: Weit verbreiteter Bewohner des Magens und des kranialen Dünndarms verschiedener Gürteltier-Arten (Navone, 1987b; Fujita et al., 1995; Suare et al., 1998)
- *Ancylostoma caninum*: *Ch.villosus* könnte ein Reservoirwirt dieses Parasiten sein (Vogelsang-Wilckens, 1932; Pinto, 1944; G.Navone, pers. Mitt.)
- *Ancylostoma (=Diploodon) mucronatum*: Spezifisch für Gürteltiere (Molin, 1860)
- *Adolpholutzia lutzi* (Travassos, 1935)
- *Necator americanus* (Vogelsang, 1930; Vogelsang, 1932).

Filarioidea, Onchocercidae

- *Dipetalonema (Dasypafilaria) averyi*: Eingekapselte Larven in der Bauchhöhle; die adulten Würmer parasitieren im Omentum. Mikrofilarien konnten weder im Herzblut noch in Hautproben der infizierten Gürteltiere nachgewiesen werden (Eberhard, 1982).
- *Dipetalonema (Orihelia) anticlava*: Im Peritoneum verschiedener Gürteltierarten in Südamerika (Lent und Teixeira de Freitas, 1942; Eberhard, 1982)
- *Acanthocheilonema tatusi*: Adulte in der Abdominalhöhle, Mikrofilarien im Blut (Mazza und Anderson, 1926)
- *Strianema venezuelensis*: Adulte in der Subkutis, Mikrofilarien in der Haut und gelegentlich im Blut (Eberhard et al., 1993).

Acanthocephala
- *Travassosia carinii*: Spezifisch für Gürteltiere (Meyer, 1933; Storrs, 1971)
- *Oncicola* spp: Gürteltiere als Fehlwirte? (Travassos, 1917; Chandler, 1946)
- *Oligacanthorhynchus* sp. (Suare et al., 1998)

Protozoa
- *Sarcocystis* spp.: In der Zungen- und der Skelettmuskulatur, nicht aber in der Herz- oder Ösophagusmuskulatur; keine Wirtsreaktionen auf die Zysten feststellbar. Die Prävalenz beträgt bei Neunbinden-Gürteltieren teilweise 100% (Howells et al., 1975; Smith et al., 1978; Folse und Smith, 1983; Barr et al., 1991).
- *Eimeria* spp. (Cunha und Muniz, 1928; Carini, 1933)
- *Globidium tatusi* (Cunha und Muniz, 1928)
- *Trichomonas tatusi*
2.14.4 Neoplasien

2.14.5 Lepra

Die fehlende zelluläre Immunität gegen den Erreger bewirkt, dass sich bei Gürteltieren immer die bösartige lepromatóse Form der Krankheit entwickelt. Die sich bei immunkompetenten Menschen manifestierende benigne tuberkuloide Form kommt beim Versuchstier nicht vor (Walsh et al., 1986). Die Läsionen entstehen durch Anhäufungen von infizierten Histiozyten in
verschiedenen Geweben (Storrs, 1978a). 80% der mit *M. leprae* inokulierten Gürteltiere entwickeln eine disseminierte (lepromatóse) Form der Lepra, die restlichen 20% sind resistent (Kirchheimer und Sanchez, 1981). In einer anderen Studie wurde die Inzidenz bei künstlicher Infektion mit 40% angegeben (Storrs, 1973). Die für die Abwehr von *M. leprae* nötige zellvermittelte Immunität ist vermutlich durch die niedrige Temperatur eingeschränkt (Purtilo et al., 1975). Bei einer hohen Infektionsdosis sterben die Tiere an Lepra oder an Pneumonie, was insofern ungewöhnlich ist, als dass bei Menschen die Lunge nie betroffen ist. Wahrscheinlich bewirkt die niedrige Körpertemperatur, dass sich das Mykobakterium in allen Geweben vermehren kann und sich eine systemische Infektion entwickelt und nicht wie bei Menschen auf wenige Gewebe beschränkt ist (Purtilo et al., 1974; Kirchheimer und Sanchez, 1976).

Diagnose: Der Nachweis von spezifischen IgM - Antikörpern gegen das phenolische Glykolipid-1 (PGL-1) mittels eines ELISA ist die sensitivere Methode als die histopathologische Untersuchung von Läsionen, obengenannten Geweben oder vom Ohr entnommenen Hautbiopsien. Der ELISA ermöglicht die Erkennung infizierter Tiere vor der Entwicklung histopathologisch nachweisbarer Veränderungen (Truman et al., 1986a; Truman et al., 1991). Bei einer Biopsie fallen folgende Veränderungen auf: Infiltration von Histiozyten mit säurefesten Stäbchen, selektive Invasion von Nerven durch säurefeste Stäbchen, elektronenmikroskopisch erkennbare schwammige Strukturen in Makrophagen wie bei der humanen lepromatósen
Lepra, kein Wachstum des Erregers in vitro, Verlust der Säurefestigkeit bei Pyridin-Exposition (Walsh et al., 1986).

Fall einer Infektion durch das Handling von künstlich infizierten und in Labors gehaltenen Gürteltieren verzeichnet worden (Storrs, 1987).
3 Haltung in Menschenobhut

3.1 Arten

Die Häufigkeit von *D. novemcinctus* in Zoologischen Gärten lässt sich auf sein grosses Verbreitungsgebiet zurückführen. In den USA, besonders in Texas, ist das Neunbinden-Gürteltier auch als Heimtier nicht ungewöhnlich.

D. hybridus und *D. septemcinctus* werden wegen ihres nervösen Charakters allgemein als schwierig zu haltend eingestuft und kommen in Zoologischen Gärten nur vereinzelt vor.

3.2 Lebensdauer in Menschenobhut

3.3 Gehege

3.3.1 Gehegegrösse

Zur erforderlichen Grösse von Gürteltier-Gehegen sind in der Literatur nur wenige Angaben zu finden. In der Schweiz bestehen verbindliche Vorschriften zur Gehegegrösse für die Haltung von Wildtieren. Die Tierschutzverordnung\(^1\) schreibt für zwei Exemplare einer kleinen oder mittelgrossen Gürteltier-Art eine Mindestfläche von 4m\(^2\), in der Revision des Anhangs 2 eine solche von 6m\(^2\) vor (T.Althaus, pers. Mitt.). Für jedes zusätzliche Tier ist 1m\(^2\) Grundfläche dazuzurechnen.

Gemäss den Richtlinien der American Zoo and Aquarium Association ist für jedes Gürteltier eine Fläche von 0.7m\(^2\) pro kg Körpergewicht vorzusehen (Flint, 1997).

Ratajszczak (1997) empfiehlt, Paare oder kleine Gruppen von Chaetophractus villosus auf einer Fläche von mindestens 10m\(^2\) zu halten. Im National Zoo in Washington standen vier Tieren derselben Art gar 49.5m\(^2\) zur Verfügung (Roberts et al., 1982).

\(^{1}\) Schweizer Tierschutzverordnung (1998): Anhang 2
3.3.2 Umgrenzung des Geheges

3.3.3 Untergrund und Einstreu

Die meisten Arten verwenden Heu oder Stroh als Polstermaterial für ihre Nester. Auch wenn ihnen ausreichend Material angeboten wird, scheinen Ch.vellerosus, Ch.nationi, E.sexinctus, P.maximus und Cabassous spp. in Menschenobhut keine Nester zu bauen (McNab, 1980; Greegor, 1985; Meritt, 1985b). Cabassous sp. verachtet selbst Boxen, Fässer oder hohle Baumstäme als Nistmöglichkeit.

3.3.4 Einrichtung

3.3.5 Klima
In unseren Breitengraden ist die Haltung von Gürteltieren in Aussengehegen nur in den Sommermonaten möglich, wobei ein Schattenplatz unabdingbar ist. Während der übrigen Zeit sollten sie wegen ihrer geringen Kältetoleranz in einem kontrollierten Klima mit konstanter Raumtemperatur um ihre thermoneutrale Zone (siehe Tabelle 7 auf Seite 124) gehalten werden. Starke Temperaturschwankungen überfordern die inkompletten Homöothermier und führen vor allem bei *Zaedyus pichiy* und *Chlamyphorus truncatus* nicht selten zum Tod (Roig, 1971). Bei gedämpftem Licht können Gürtelmulle auch tagsüber beobachtet werden; bei stärkerer Helligkeit graben sie sich jedoch rasch ein (Meritt, 1985a).
Die ideale Umgebungstemperatur für *Dasypus novemcinctus* beträgt 25 bis 30°C (Johansen, 1961). Die Luftfeuchtigkeit sollte 40 bis 60% betragen, und bei Innengehegen wird eine Belüftung mit Negativdruck und 6 bis 8 Luftumwälzungen pro Stunde empfohlen (Flint, 1997).

3.3.6 Gruppen- oder Einzelhaltung
In der Literatur werden sowohl die Gruppen- als auch die Einzelhaltung von Gürteltieren als unproblematisch beschrieben. Die Tiere leben in Einzelgehegen und werden – falls mehrere Exemplare vorhanden – nur zur Zucht zusammengeführt, oder sie leben ganzzjährig in Gruppen. Allerdings ist zu beachten, dass die meisten wildlebenden Gürteltiere Einzelgänger sind und deshalb nicht in grossen Gruppen gehalten werden sollten. Steht ein genügend grosses Gehege zur Verfügung, in welchem die Tiere sich voneinander zurückziehen können, ist die Paarhaltung wohl am ehesten angebracht. Zwei in Menschenobhut lebende Riesengürteltiere durchbrachen
die Trennwand zwischen ihren Gehegen und verhielten sich nur ruhig, wenn sie zusammen gelassen wurden. Das Weibchen zeigte eine grosse Unruhe, wenn es von Männchen abgetrennt war (G.Solís, pers. Mitt.).

Nicht zu vergessen ist die erhöhte Neugeborenen-Sterblichkeit der Gürteltiere, wenn Männchen und Weibchen um den Geburtstermin nicht voneinander getrennt werden (siehe Kapitel “Reproduktion“ auf Seite 125).

3.3.7 Haltung in Mischgehegen

Gürteltiere können in ausreichend grossen Gehegen gut mit anderen Tierarten kombiniert werden. Allerdings ist dabei zu beachten, dass z.B. Chaetophractus villosus oder Euphractus sexcinctus Jungtiere – eigene oder einer anderen Art –, durch Krankheit oder Verletzung flugunfähige Vögel oder auch adulte Kleintiere angreifen können. Deshalb ist es sicherer, sie mit baumlebenden Tieren, z.B. Faultieren oder Affen, Vögeln oder Fledermäusen
zu halten. Auch bei der gemeinsamen Haltung verschiedener Gürteltier-Arten ist Vorsicht angebracht: Die kräftigen *Ch. villosus* werden z.B. *D. novemcinctus* oder *Ch. vellerosus* aus ihrem Revier zu vertreiben versuchen und können ihnen dabei schwere Verletzungen zufügen (eig. Beob.).

3.3.8 Laborhaltung

In Venezuela wurden jeweils vier bis sechs *Dasypus sabanicola* in 1.5 x 1.5m grossen Gehegen aus Holz untergebracht (Ulrich et al., 1976). In einem anderen Labor stand vier bis sechs Tieren ein 3 x 6m grosses Offengehege mit hohem Gras und Wasser zur Verfügung (Pacheco und Naranjo, 1978).

In einem Labor in Argentinien lebt *Dasypus hybridus* in einem 6 x 2m grossen Stall, welcher Betonböden und -wände aufweist. Ein Drittel davon ist von einem Dach bedeckt und enthält ein Nest und eine Schlafbox aus Backsteinen (1m³) mit L-förmigem Eingang von 20cm Höhe. Ein Tor führt zum offenen, nur mit einem Gitter bedeckten Teil des Geheges (Carmanchahi et al., 1997).
In den Achtziger Jahren wurden in Brasilien jeweils ein bis zwei *Euphractus sexcinctus* in 1 x 1m grossen, mit Gitter bedeckten Holzkisten gehalten (Opromolla et al., 1980).

3.4 Ernährung

3.4.1 Allgemeine Bemerkungen

Futterneid wird auch bei Gürteltieren beobachtet (Platt et al., 1967). Um eine angemessene Nahrungsaufnahme aller Tiere zu ermöglichen, sollte ein Futternapf pro Tier bereitgestellt werden (Meritt, 1976b).

Bei der Zusammenstellung des Futters muss das Dauerwachstum der Zähne berücksichtigt werden. Bei zu weicher Nahrung nutzen sich die Zähne nicht genügend ab, was zu Zahnfleischverletzungen führen kann. Aus diesem Grund sollten Früchte, Gemüse, Eintagesküken und Mäuse Bestandteil ihrer Nahrung sein (Merrett, 1983).

Zu untersuchen wäre, ob die Ernährung verantwortlich ist für die Beobachtung, dass in Menschenobhut lebende *Chaetophractus vellerosus* eine blassere Bauchhaut und hellere Borsten aufweisen als Wildfänge (eig. Beob.).

Bei Neunbinden-Gürteltieren, die in einer natürlichen Umgebung gehalten werden, fällt ein Verlangsamen des Metabolismus während der Wintermonate auf. Auch die Futteraufnahme geht in dieser Zeit zurück (S.McPhee, pers. Mitt.). Dieser Tatsache sollte bei der Berechnung der Futtermenge Beachtung...
geschenkt werden. Es liegen keine Daten darüber vor, ob dies auch bei anderen Arten der Fall ist. Es ist jedoch gut vorstellbar, dass alle Gürteltier-Arten in der kälteren Jahreszeit ihre Aktivität und damit den Nährstoffverbrauch reduzieren.

3.4.2 Blut- und Futteranalysen

Die in Labors übliche Diät besteht aus Katzenfutter und einem Vitamin-, Mineralstoff- und Proteinzusatz. Sie enthält deutlich weniger Asche und Rohfaser als das natürliche Futter (siehe Tabelle 4). Der Bruttoenergie-, Protein- und Fettgehalt ist in beiden Rationen vergleichbar, wobei bei dieser Studie die jahreszeitlichen Schwankungen des natürlichen Futters nicht

<table>
<thead>
<tr>
<th>Tabelle 4: Futteranalyse von wildlebenden und in Labors gehaltenen Neunbinden-Gürteltieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laborfutter</td>
</tr>
<tr>
<td>Asche</td>
</tr>
<tr>
<td>Rohfaser</td>
</tr>
<tr>
<td>Protein</td>
</tr>
<tr>
<td>Fett</td>
</tr>
<tr>
<td>Bruttoenergie</td>
</tr>
</tbody>
</table>

3.4.3 Fütterung von Labortieren

Dasypus novemcinctus

Die meisten Neunbinden-Gürteltiere in Laborhaltung werden mit Dosenfutter für Katzen und Vitamin-, Protein- und Mineralstoffzusätzen ernährt. Folgende Mischungen und Futtermengen sind in der Literatur beschrieben:

- Täglich 1 bis 2 Tassen einer Mischung aus Purina® Cat Chow und Wasser (1:1), dreimal pro Woche Vitaminzusatz (Dosis für Hunde oder Katzen) und 0.5mg Vitamin K. Wöchentlich Beigabe von wenig Früchten wie Bananen oder Melone und gehacktem Ei (Storrs, 1987).
- Katzendosenfutter und Eier; mit Wasser vermischte Erde ad libitum (Billingham und Neaves, 1980).
- Täglich 100g Purina® Cat Chow; Vitamin-, Protein- und Mineralzusätze über das angefeuchtete Futter gestreut (D'Addamio et al., 1977).
- Hundedosenfutter mit Lebergeschmack, angefeuchtetes Katzen-Trockenfutter und 1%-mineralisiertes Wasser zu gleichen Teilen; 1 Tasse pro Tag (Truman und Sanchez, 1993).
- 200g rohes gehacktes Pferdefleisch, 1 Ei, 1 Zucchini, 1 Kartoffel, Gurke, 250g Früchte (je nach Saison Wassermelone, Ananas, Honigmelone o.ä.); 1x pro Woche 1 Teelöffel Vitaminpulver für Kinder (Quesada-Pascual et al., 1987).
- Granuliertes Fischfutter (Trouvit® 100 Bio 00 Granulat), 100g mit 100ml Wasser vermischt; davon 1 Tasse pro Tier (Kazda, 1981).
- Säugende Neunbinden-Gürteltiere: Science® Diet Dry Feline Chow, vermischt mit einem hartgekochten Ei, wenig kleingeschnittenen Früchten und Gemüse ad libitum (McDonough et al., 1998).
Weitere Gürteltier-Arten

- *Dasypus sabanicola:*
 Little Friskies® High Protein Cat Dinner (Ulrich et al., 1976).

- *Chaetophractus villosus:*
 Purina® Dog Chow (Affanni et al., 1986).
 Pellets für Hunde oder Katzen (jene für Katzen werden von den Tieren bevorzugt) mit Milch und Vitaminen (Cuba-Caparó, 1979).

- *Euphractus sexcinctus:*
 Fütterung mit täglich 100g einer Mischung aus Brot, Fleisch, Eiern, Milch und Geflügelfutter. Letzteres besteht aus Blut-, Fleisch- und Fischmehl, Alfalfa, Gluten, Mais, Baumwollsamen-, Sesam-, Erdnuss-, Weizen- und Maismehl, Kalziumcarbonat, Salz und Vitamin-, Mineralstoff- und Proteinzusätzen (Opromolla et al., 1980).

3.4.4 Fütterung im Zoo

Zur Futterzusammensetzung von in Zoologischen Gärten gehaltenen Gürteltieren liegt sehr wenig Literatur vor.

Mischung für alle Arten ausser *C.truncatus* und *P.maximus:*

13.5kg Fleischmischung (1:1 gehacktes Pferdefleisch und Purina® Mink Developer Chow)
1 Esslöffel Lebertran
10 Geschälte hartgekochte Eier
2/3 Tasse Melasse
1/3 Tasse Honig
1/4 Tasse Erdnussöl
1/3 Tasse Flüssige Vitaminmischung (Vidaylin®)
1/3 Tasse Mineralstoff-Pulver (VPC-Dynafos®)

Konsistenz: fest.

Von dieser Mischung werden folgende Mengen pro Tag verabreicht und mit Bananen- und Süsskartoffelstücken, gehacktem Ei und 1/4 Teelöffel Paltone® Pulver mit Vitamin K (im Verhältnis 454g : 1g) bestreut:

Ch. villosus, *Ch. nationi*, *E. sexcinctus*, *D. novemcinctus*, *C. centralis*: 1 Tasse
Z. pichiy, *Ch. vellerosus*, *T. matacus*, *D. septemcinctus*: 1/2 Tasse

Priodontes maximus:

Die folgende Mischung basiert auf individuellen Präferenzen, welche sich von denjenigen anderer Arten stark unterscheiden:

0.9 kg Hill’s® P/D
1.2 Liter Wasser
2 Esslöffel Gevral® Protein
2 Esslöffel Tone® Protein
1 Esslöffel Paltone® Mineralstoff-Pulver
Vitamin K (K-Sol®)

Konsistenz: halbflüssig.

Menge: 1.5kg pro Tag.

Chlamyphorus truncatus:

In Milch eingeweichtes Brot
Haferkörner
Mehlwürmer, Käfer, Grillen

(Quellen: Meritt, 1976b; 1977)

Im Zoo São Paulo wird bzw. wurde *D. novemcinctus*, *E. sexcinctus*, *Cabassous sp.*, *Tolypeutes sp.* und *P. maximus* zweimal täglich 50g/kg der folgenden Mischung verabreicht (Diniz et al., 1997):

400g Rohes, gehacktes Fleisch (Hühnerhals)
200g Hundefutter
100g Früchte (Bananen, Orangen, Papaya)
100g Gekochtes Gemüse (Karotten, Süßkartoffeln)
100g Erdnüsse
100g Maisschrot
Vitamine und Mineralstoffe

Zusätzlich erhält bzw. erhielt jedes Tier pro Tag ein Ei und gelegentlich Termiten oder ein Küken.

Im Zoo Poznan, Polen, werden die *Chaetophractus villosus* mit folgender Mischung gefüttert:

\[
\begin{align*}
\text{1/2} & \quad \text{Rohes oder gekochtes Rind- oder Pferdefleisch} \\
\text{1/3} & \quad \text{Kleingeschnittene Früchte (Bananen, Trauben, Pfirsiche, Kirschen, Pflaumen, Äpfel) und rohes geraspeltes oder gekochtes Gemüse (Karotten, Randen, Salat, Gurken, Blumenkohl, Tomaten)} \\
\text{1/4} & \quad \text{Babymüsli oder gekochter Reis mit Milch oder Quark mit hartgekochten Eiern bzw. rohes Eigelb}
\end{align*}
\]

Zweimal pro Woche erhalten die Gürteltiere Insekten, d.h. Heuschrecken, Grillen oder Mehlwürmer, wobei an diesen Tagen die übliche Futtermenge halbiert wird. Wegen der Tendenz zur Obesität wird ein Fastentag pro Woche eingelegt (Ratajszczak und Trzesowska, 1997).

Der National Zoo, Washington, fütterte die *Chaetophractus villosus* in den Achtziger Jahren täglich mit:

100g Zu/Preen® Feline Diet
1 Teelöffel Weizenkeime
1/4 Teelöffel Mirracoat®
Wasser
Konsistenz: pastös.
Ab und zu wurden lebende Grillen ins Gehege verbracht oder verschiedene Invertebraten ins Futter gemischt (Roberts et al., 1982).

Die *Tolypeutes matacus* im National Zoo, Washington, werden mit einer Mischung aus Dosenfutter für Katzen, geraspelter Süßkartoffel, Banane, gehacktem Ei und Edentate Powder gefüttert. Letzteres enthält den Vitaminzusatz Vionate® und Vitamin K. Die vom Lincoln Park Zoo, Chicago, empfohlene Diät besteht aus ca. 60g Fleisch (50% mageres gehacktes Pferdefleisch und 50% eingeweichtes Purina® Mink Chow), einigen Stücken Banane, gekochter Süßkartoffel, gehacktem Ei und 1/4 Teelöffel einer Paltone®-Vitamin K-Mischung (Kordella, 1998).

Santos ernährte seine *Tolypeutes tricinctus* mit Früchten, Mehlwürmern, hartgekochten Eiern und einer Futtermischung für Krallenäffchen (Santos et al., 1994).

3.4.5 Adaptation
Generell gewöhnen sich Jungtiere leichter an die Ersatznahrung als Adulte. Wird das Futter nicht von Anfang an akzeptiert, ist die prophylaktische Verabreichung von injizierbaren Multivitaminpräparaten und Vitamin B-Komplex empfehlenswert.

Wildfänge von *Dasypus hybridus*, welche die Futteraufnahme verweigern, werden in Argentinien mit an Laborbedingungen adaptierten Artgenossen zusammen gehalten. Auf diese Art gewöhnen sie sich rasch ans neue Futter (Carmanchahi et al., 1997).

3.4.6 Vitamin K
Die Supplementierung von Vitamin K scheint für die meisten in Menschenobhut lebenden Gürteltier-Arten essentiell zu sein, um einer Blutgerinnungsstörung vorzubeugen. Ihr natürliches Futter besteht zu einem grossen Teil aus Ameisen und Termiten, welche viel Ameisensäure enthalten. Aus dieser Säure metabolisiert die Bakterienflora wildlebender Gürteltiere genügend Vitamin K (J.C.Sassaroli, pers. Mitt.). Da aus naheliegenden Gründen die Verfütterung einer ausreichenden Menge Termiten und Ameisen in Zoologischen Gärten nicht möglich ist, kommt es häufig zu einer Unterversorgung mit Ameisensäure und infolgedessen zu einem Mangel an Vitamin K. *Ch.villosus* scheint nicht auf zusätzliche Vitamin K - Gaben
angewiesen zu sein; in den Zoo- und Laborhaltungen, welche die Nahrung ihrer Braunhaar-Gürteltiere nicht supplementieren, sind bis anhin noch keine Koagulationsstörungen aufgetreten (aus der Umfrage).

Die Angabe der zu verabreichenden Dosis ist schwierig, da diese von der Gürteltier-Art, der Futterzusammensetzung und individuellen Faktoren abhängt. Es liegen weder Studien über die intestinale Absorption der oft peroral verabreichten injizierbaren Vitaminpräparate noch über die toxische Grenze von Vitamin K bei Gürteltieren vor. In den meisten Zoos basiert die Dosis deshalb auf Erfahrungswerten. Im Bronx Zoo werden beispielsweise jedem Tier pro Tag 0.5 bis 0.6g Vitamin K mit dem Futter verabreicht. Dies entspricht einer Menadion-Menge von 8.8 bis 10.6mg (Nidasio und Graffam, 1999). Der Toronto Zoo empfiehlt die tägliche Gabe von 500mg Vitamin K (E.Valdes, pers. Mitt.). Nicht zu vergessen ist die Kontrolle des Verhältnisses von Vitamin K zu anderen fettlöslichen Vitaminen im Futter, da jedes davon einen antagonistischen Einfluss auf die Absorption der anderen haben kann (Nidasio und Graffam, 1999).

3.5 Klinische Werte und Hämatologie

Bei *Ch.villosus* beträgt die durchschnittliche Herzfrequenz 116/min. Die Ruhe-Atemfrequenz von 40/min erhöht sich bei Stress bis auf 160/min (eig. Beob.).

Die Hämatologie- und Blutchemiewerte sind in Tabelle 5 und Tabelle 6 zusammengestellt. Alle Daten geben den Mittelwert ± die Standardabweichung wieder.

Bei *Ch.villosus* ist die sehr rasche Blutkoagulation auffällig (eig. Beob.). Gemäss Lewis und Doyle (1964) variiert die Blutplättchensgrösse stark.
<table>
<thead>
<tr>
<th></th>
<th>D. novemcinctus</th>
<th>D. novemcinctus</th>
<th>D. novemcinctus</th>
<th>D. novemcinctus</th>
<th>D. hybridus</th>
<th>D. septemcinctus</th>
<th>Ch. villosus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labortiere</td>
<td>Labortiere</td>
<td>Wildfänge</td>
<td>Wildfänge</td>
<td>Wildfänge</td>
<td>Wildfänge</td>
<td>Wildfänge</td>
</tr>
<tr>
<td>Hämatokrit %</td>
<td>n ≥ 10</td>
<td>n = 20</td>
<td>n ≥ 133</td>
<td>n = 96</td>
<td>n = 16</td>
<td>n = 20</td>
<td>n = 55; n = 25</td>
</tr>
<tr>
<td></td>
<td>48.3 ± 5.8</td>
<td>49.3 ± 3.5</td>
<td>43.5 ± 5.8</td>
<td>39.67 ± 5.60</td>
<td>33 ± 5</td>
<td>36.3 ± 3.9</td>
<td></td>
</tr>
<tr>
<td>Hämoglobin g/dl</td>
<td>x10^6/mm³</td>
<td>x10^6/mm³</td>
<td>x10^6/mm³</td>
<td>x10^6/mm³</td>
<td>x10^6/mm³</td>
<td>x10^6/mm³</td>
<td>x10^6/mm³</td>
</tr>
<tr>
<td></td>
<td>14.0 ± 1.8</td>
<td>15.0 ± 1.4</td>
<td>14.6 ± 1.9</td>
<td>16.84 ± 2.08</td>
<td>13.32 ± 1.97</td>
<td>11.4 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>Erythrozyten</td>
<td>x10^3/mm³</td>
<td>x10^3/mm³</td>
<td>x10^3/mm³</td>
<td>x10^3/mm³</td>
<td>x10^3/mm³</td>
<td>x10^3/mm³</td>
<td>x10^3/mm³</td>
</tr>
<tr>
<td></td>
<td>6.7 ± 1.4</td>
<td>7.47 ± 0.58</td>
<td>6.6 ± 1.4</td>
<td>5.96 ± 0.68</td>
<td>4.98 ± 1.15</td>
<td>4.06 ± 0.55</td>
<td></td>
</tr>
</tbody>
</table>
| Thrombozyten* x10^3/mm³ | 399 ± 152 (n=22)*
| | 10.3 ± 3.6 | 8.84 ± 3.61 | 12.2 ± 6.1 | 8.95 ± 4.56 | 10.08 ± 4.00 | 6.51 ± 2.60 | 9.72 ± 5.30 |
| Leukozyten x10^3/mm³ | 3.8 ± 1.6 | 2.93 ± 1.82 | 7.0 ± 4.6 | 5.30 ± 3.41 | 59% ± 15 | 51% ± 13 |
| stabkernige | 0.20 ± 0.20 | 0.5 ± 0.4 | 0.43 ± 0.34 | 0.4 ± 0.8 | 0.4 ± 0.4 | 0.36 ± 0.43 | 1% ± 2 |
| segmentkernige | 5.72 ± 3.00 | 0.5 ± 0.2 | 0.07 ± 0.11 | 0.1 ± 0.1 | 0.07 ± 0.82 | 0.05 ± 0.08 | 0.25% ± 0.5 |
| Eosinophile x10^3/mm³ | 0.5 ± 0.4 | 0.043 ± 0.34 | 0.36 ± 0.43 | 0.14 ± 0.08 | 1% ± 2 | 3.9% ± 2.8 |
| Basophile x10^3/mm³ | 0.2 ± 0.2 | 0.07 ± 0.11 | 0.1 ± 0.1 | 0.07 ± 0.82 | 0.05 ± 0.08 | 0.25% ± 0.5 | 1% ± 2 |
| Lymphozyten x10^3/mm³ | 4.4 ± 2.7 | 5.44 ± 2.76 | 3.1 ± 2.2 | 2.08 ± 1.51 | 3.46 ± 1.68 | 31% ± 16 | 36% ± 13 |
| Monozyten x10^3/mm³ | 0.5 ± 0.8 | 0.08 ± 0.12 | 0.9 ± 1.1 | 1.08 ± 0.83 | 0.53 ± 0.32 | 9% ± 5 | 6% ± 3 |
| MCV μm³ | 66.0 ± 1.8 | 68.04 ± 14.60 | 68 ± 7 | 91.6 ± 7.1 |
| MCH μg | 20.1 ± 1.5 | 28.66 ± 4.60 | 28 ± 5 | 28.9 ± 2.9 |
| MCHC % | 30.6 ± 2.2 | 42.74 ± 6.56 | 41 ± 6 | 31.6 ± 2.2 |

Quelle:
- (D'Addamio et al., 1978)
- (Purtilo et al., 1975)
- (D'Addamio et al., 1978)
- (Purtilo et al., 1975)
- (Cuba-Caparó, 1976)
- (Coppo et al., 1979)
- (Casanave und Polini, 1999)
- *(Polini und Casanave, 1999b)*
<table>
<thead>
<tr>
<th></th>
<th>D. novemcinctus</th>
<th>D. novemcinctus</th>
<th>D. novemcinctus</th>
<th>D. novemcinctus</th>
<th>D. septemcinctus</th>
<th>Ch. villosus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labortiere</td>
<td>Labortiere</td>
<td>Labortiere</td>
<td>Wildfänge</td>
<td>n = 20</td>
<td>n = 24; n = 22</td>
</tr>
<tr>
<td>n = 18; n = 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na mEq/l</td>
<td>136.15 ± 1.34</td>
<td>150 ± 15 (n = 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K mEq/l</td>
<td>5.17 ± 0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca mg/l</td>
<td>80.7 ± 16.3</td>
<td>112.9 ± 11.70</td>
<td>92 ± 3.87</td>
<td>98 ± 17.49</td>
<td>87.7 ± 15.4</td>
<td></td>
</tr>
<tr>
<td>P mg/l</td>
<td>38.8 ± 9.9</td>
<td>55.1 ± 7.59</td>
<td>34 ± 7.74</td>
<td>62 ± 17.49</td>
<td>45.3 ± 14.2</td>
<td></td>
</tr>
<tr>
<td>Glucose g/l</td>
<td>0.80 ± 0.26</td>
<td>1.27 ± 0.57</td>
<td>0.79 ± 0.35</td>
<td>0.92 ± 0.41</td>
<td>0.77 ± 0.25</td>
<td>1.04 ± 0.24</td>
</tr>
<tr>
<td>Hämoglobin g/l</td>
<td>169.5 ± 29.9</td>
<td></td>
<td></td>
<td>118 ± 25 (n = 7)</td>
<td></td>
<td>133.2 ± 19.7</td>
</tr>
<tr>
<td>Fibrinogen g/l</td>
<td>4.6 ± 2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.9 ± 0.7 / 3.8 ± 1</td>
</tr>
<tr>
<td>Albumin g/l</td>
<td>23.3 ± 6.6</td>
<td>29.6 ± 3.48</td>
<td>31 ± 3.87</td>
<td>32 ± 5.83</td>
<td>22.3 ± 8.20</td>
<td>37.2 ± 4.0</td>
</tr>
<tr>
<td>Globulin g/l</td>
<td>32.8 ± 9.4</td>
<td>43.3 ± 9.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serumprotein g/l</td>
<td>56.1 ± 14.6</td>
<td>69.9 ± 6.96</td>
<td>64 ± 3.87</td>
<td>62 ± 11.66</td>
<td>60.3 ± 10.50</td>
<td>66.1 ± 6.0</td>
</tr>
<tr>
<td>A:G-Verhältnis</td>
<td>0.52 ± 0.20</td>
<td>0.70 ± 0.13</td>
<td>1.0 (n = 2)</td>
<td>0.54 ± 0.24</td>
<td>0.54 ± 0.24</td>
<td>1.4 ± 0.19</td>
</tr>
<tr>
<td>Bilirubin gesamt mg/l</td>
<td>2.66 ± 0.62</td>
<td>1.0 ± 0.63</td>
<td>1.0 (n = 2)</td>
<td>2.78 ± 0.57</td>
<td>80 ± 39</td>
<td></td>
</tr>
<tr>
<td>AP U/l</td>
<td>49.30 ± 6.48</td>
<td>74 ± 27.11</td>
<td></td>
<td>80 ± 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST U/l</td>
<td>53 ± 31</td>
<td>15 ± 19.36</td>
<td>177 ± 180.76</td>
<td>36 ± 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT U/l</td>
<td>17 ± 31</td>
<td></td>
<td>11 ± 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH U/l</td>
<td></td>
<td>669 ± 135.55</td>
<td>1587 ± 1422.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harnstoff g/l</td>
<td>0.33 ± 0.13</td>
<td>0.56 ± 0.22</td>
<td>0.51 ± 0.08</td>
<td>1.39 ± 0.35</td>
<td>0.23 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>Kreatinin mg/l</td>
<td>9.09 ± 2.17</td>
<td>3.80 ± 2.53</td>
<td>10 ± 3.87</td>
<td>18 ± 11.66</td>
<td>7.88 ± 2.64</td>
<td></td>
</tr>
<tr>
<td>Harnsäure mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.97 ± 0.59</td>
<td></td>
</tr>
<tr>
<td>Cholesterol g/l</td>
<td>1.14 ± 0.43</td>
<td>1.21 ± 0.41</td>
<td>0.94 ± 0.15</td>
<td>1.07 ± 0.37</td>
<td>1.71 ± 0.37</td>
<td></td>
</tr>
<tr>
<td>Lipide g/l</td>
<td>5.32 ± 1.52</td>
<td></td>
<td></td>
<td>4.17 ± 1.29</td>
<td>0.46 ± 0.15</td>
<td>0.37 ± 0.16</td>
</tr>
<tr>
<td>Triglyceride g/l</td>
<td>0.52 ± 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle:
- (Prejean und Travis, 1971)
- (Strozier et al., 1971)
- (Ramsey et al., 1981)
- (Ramsey et al., 1981)
- (Coppo et al., 1979)
- (Maldonado und Casanave, 1993)
- (Polini und Casanave, 1999a; 1999b)
- (Giacometti et al., 1972)
Tabelle 7: Körpertemperatur und thermoneutrale Zone

<table>
<thead>
<tr>
<th>Tierbezeichnung</th>
<th>Körpertemperatur bei Raumtemperatur 20°C (°C)</th>
<th>Thermoneutrale Zone (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burmeisteria retusa</td>
<td>33.0</td>
<td>≥ 28.0</td>
</tr>
<tr>
<td>Tolypeutes mатаcus</td>
<td>33.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Tolypeutes tricinctus</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>Priodontes maximus</td>
<td>33.6</td>
<td>27.0</td>
</tr>
<tr>
<td>Cabassous spp.</td>
<td>33.6</td>
<td>27.5</td>
</tr>
<tr>
<td>Euphractus sexcinctus</td>
<td>34.2</td>
<td>26.0</td>
</tr>
<tr>
<td>Chaetophractus villosus</td>
<td>35.1</td>
<td>29.5</td>
</tr>
<tr>
<td>Chaetophractus nationi</td>
<td>35.5</td>
<td>29.0</td>
</tr>
<tr>
<td>Chaetophractus vellerosus</td>
<td>34.4</td>
<td>30.0</td>
</tr>
<tr>
<td>Zaedyus pichi</td>
<td>35.2*</td>
<td>28.0</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>34.5</td>
<td>28.0</td>
</tr>
<tr>
<td>Dasypus hybridus</td>
<td>29.5 – 32</td>
<td></td>
</tr>
<tr>
<td>Dasypus sabanicola</td>
<td>34 – 35</td>
<td></td>
</tr>
</tbody>
</table>

* während der Winterstarre sinkt die Körpertemperatur auf 18°C

(Quellen: Ulrich et al., 1976; Cuba-Caparó, 1978; McNab, 1985)

3.6 Reproduktion

3.6.1 Zuchterfolge und -probleme in Menschenobhut

Obwohl Gürteltiere schon seit vielen Jahren in Menschenobhut gehalten werden, sind Berichte über Zuchterfolge verhältnismässig selten. Die schwer zu haltenden Arten wie Priodontes maximus, Chlamyphorus truncatus und Burmeisteria retusa scheinen noch nie in Menschenobhut gezüchtet zu haben (Chebez, 1994).

Von *Chaetophractus nationi* liegt nur ein Bericht über eine Geburt in Menschenobhut vor. Allerdings starben die zwei Jungtiere kurz nach der Geburt (Merrett, 1983).

Im Zoo von Buenos Aires, Argentinien, hat sich ein Gehege von 10m Durchmesser und mindestens 1.5m Tiefe als günstig erwiesen. Bei der Zusammenstellung der Zuchtgruppen ist gemäss Sassaroli (1996) zu berücksichtigen, dass die Männchen sehr aggressiv werden und sich gegenseitig oder den Jungtieren schwere Verletzungen zufügen oder die Geburtsphase beeinflussen können. Er empfiehlt deshalb, einen Monat vor
dem erwarteten Geburtstermin die Männchen von den trächtigen Weibchen zu separieren, um jeglichen Stress zu vermeiden. Dazu sind die trächtigen Tiere in ein mit Erde eingestreutes Gehege zu verbringen, in welchem sie ihren Bau graben können, um sich für die Geburt zurückzuziehen. Dadurch wird vermieden, dass die Jungen von der Mutter auf der Flucht vor dem Männchen – oder durch andere Faktoren gestresst – andauernd herumgetragen und dabei verletzt oder gar getötet bzw. nicht gesäugt werden (J.C.Sassaroli, pers. Mitt.).

Ein mögliches Zuchtschema ist das Zusammenführen eines geschlechtsreifen Paares während vier Wochen mit darauffolgender Separierung des Weibchens für die Dauer einer Trächtigkeit, d.h. während 120 Tagen. 60% der Weibchen nehmen in dieser Zeitspanne auf (J.Gramieri, pers. Mitt.). Als Alternative bietet sich folgende Vorgehensweise an: Jedes Weibchen wird nacheinander mit drei Männchen zusammengeführt und verbringt jeweils 35 Tage mit einem Partner. Danach isoliert man das Weibchen während 140 Tagen. Falls es in diesem Intervall nicht geworfen hat, wird das Schema wiederholt (Kordella,

Tabelle 8: Hormonspiegel bei weiblichen D. novemcinctus

<table>
<thead>
<tr>
<th>Hormon (ng/ml)</th>
<th>Wildtiere</th>
<th>Tiere in Menschenobhut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progesteron</td>
<td>Mit CL *</td>
<td>129 ± 60.0</td>
</tr>
<tr>
<td></td>
<td>Ohne CL</td>
<td>0.83 ± 0.13</td>
</tr>
<tr>
<td>17α-Hydroxyprogesteron</td>
<td>Mit CL</td>
<td>0.68 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Ohne CL</td>
<td>0.45 ± 0.1</td>
</tr>
</tbody>
</table>

* CL = Corpus luteum
Berücksichtigt man das Verhalten wildlebender Gürteltiere, so kommen weitere Faktoren für den fehlenden Zuchterfolg in Frage:

- Durch die regelmässige Reinigung des Geheges werden immer auch Geruchsmarkierungen entfernt, welche aber einerseits das Territorium eines Männchens anzeigen und andererseits Auskunft geben über dessen Reproduktionsstatus. Das Fehlen dieser olfaktorischen Informationen könnte bewirken, dass der Deckakt gehemmt wird (McDonough, 1997).

3.6.2 Trächtigkeitsuntersuchung

Im Gegensatz zu *Ch.villosus* zeigt *Euphractus sexcinctus* vor der Geburt eine auffallende Trägheit. Zusammen mit den anschwellenden Zitzen und einer eventuellen Kolostrum-Sekretion soll dies ein leicht erkennbares Anzeichen einer Trächtigkeit sein (Gucwinska, 1971).

Trächtige *Dasypus novemcinctus* zeigen eine Gewichtszunahme von bis zu 1kg. Gegen Ende der Trächtigkeit wird das Abdomen birnenförmig. Eine deutliche Reduktion der Aktivität und das vermehrte Schlafen können weitere Hinweise auf eine nahende Geburt sein. Auch sind die Bewegungen der Feten abdominal zu palpieren (S.McPhee, pers. Mitt.).

3.6.3 Handaufzucht

Tabelle 9: Zusammensetzung der Milch von Ch.villosus

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalprotein</td>
<td>7.83 g/dl</td>
</tr>
<tr>
<td>Fettlösliche Proteine</td>
<td>4.14 g/dl</td>
</tr>
<tr>
<td>Kasein</td>
<td>3.69 g/dl</td>
</tr>
<tr>
<td>Milchzucker</td>
<td>4.44 g/dl</td>
</tr>
<tr>
<td>Milchfett</td>
<td>8.23 g/dl</td>
</tr>
<tr>
<td>β-Laktoglobulin</td>
<td>1.28 g/dl</td>
</tr>
<tr>
<td>Molekulargewicht</td>
<td>15 KDa</td>
</tr>
</tbody>
</table>

haltiges Adultenfutter angebracht. Xenarthren scheinen besonders Mühe zu haben mit der Umstellung auf festes Futter. Gute Beobachtung der Futteraufnahme und viel Geduld sind nötig, um Verluste während dieser Phase zu verhindern.

Handaufzuchten sollten in einem Inkubator oder einer ähnlichen kontrollierbaren Umgebung bei ca. 26°C und 40 bis 60% Luftfeuchtigkeit gehalten werden. Die Abwesenheit von Artgenossen bei der Handaufzucht erfordert das Anbieten eines Ersatzes wie Tücher, Stofftiere oder Watterollen, auf welche die Jungtiere klettern oder unter denen sie sich verkriechen können. Auch das schon früh in Erscheinung tretende Grabeverhalten lässt sich an diesem Material trainieren (Meritt, n.d.).

Tolypeutes matacus - Junge können mit einem Tubus für menschliche Frühgeburten gefüttert werden. Im ersten Monat, d.h. bis das Geburtsgewicht verdreifacht ist, werden die Tiere via Sonde oder mit einem Welpenaufzuchtfäschchen mit Esbilac® (1 Teil Esbilac® auf 3 Teile Wasser) oder Prosobee® (1:1 mit Wasser vermischt) gefüttert. Es ist günstig, einige Tropfen eines Vitamin-Mineralstoff-Sirups zuzugeben. Gegen Ende des ersten Lebensmonats setzt man Katzenfutter und einen Proteinzusatz in ansteigender Menge zu, um mit etwa 6 Wochen auf selbständige Futteraufnahme aus einem Napf übergehen zu können. Dabei werden 2 Teile Purina® Cat Chow oder Gürteltier-Futter mit einem Teil Esbilac® oder Prosobee®, 1 bis 2 Teelöffel Geural® Protein und 1/4 Teelöffel Vitamin-Mineralstoffpulver mit Vitamin K vermischt. Bei Erreichen eines Gewichts von 1kg und Härtung des Panzers kann auf das Futter für adulte Gürteltiere umgestellt werden (Kordella, 1998).
3.7 Ethologie / Stereotypien

Im selben Gehege lebende Neunbindengürteltier-Männchen können Aggressionsverhalten zeigen, wenn sie nicht von klein auf aneinander gewöhnt wurden. Aggressionen treten auch auf, wenn sich zu viele Tiere ein zu kleines Gehege teilen müssen und der Platz nicht ausreicht, damit sich unterlegene Tiere aus dem Revier des dominanten zurückziehen können (Roberts et al., 1982; S.McPhee, pers. Mitt.).

3.8 Handling

3.8.1 Halten von Gürteltieren

3.8.2 Altersbestimmung

Ältere Tiere aller Arten sind an den abgenutzten oder an fehlenden Zähnen zu erkennen. Praktischer ist eine Einteilung aufgrund des Gewichts. Bei Neunbinden-Gürteltieren aus den USA werden Exemplare unter 2.5kg als
Jungtiere, solche zwischen 2.6 und 3kg als junge Adulte und schwerere als Adulte klassiert (Day et al., 1995). Bei Jungtieren von *Ch.villosus* fällt die dünnere und weichere Bauchhaut auf (eig. Beob.).

3.8.3 Blutentnahme

Die meisten Erfahrungen zur Blutentnahme liegen von *Dasypus novemcinctus* vor (z.B. Moore, 1983; Herbst und Webb, 1988). Die beschriebenen Techniken lassen sich auf ähnliche grosse Arten übertragen; bei *Tolypeutes matacus* erwiesen sie sich jedoch als unzuverlässig (M.Campbell, pers. Mitt.). Eine 21 gauge, 1 inch-Kanüle sollte für alle Venen angemessen sein. Die ersten drei Techniken sind die am häufigsten angewendeten:

V. subclavia

Verläuft parallel zum Schlüsselbein, seiner kaudolateralen Fläche entlang. Klavikula palpieren, Druck auf Thoraxeingang ausüben, Kanüle lateral und parallel zum Schlüsselbein auf gleicher Tiefe wie die longitudinale Mittellinie des Klavikulaschafts einführen.

Vorteile Einfache Technik, rasche Blutentnahme.

Anmerkung Bei *Ch.villosus* verläuft die Vene entlang der Dorsalfläche der Klavikula und kann nicht punktiert werden (eig. Beob.).

V. caudalis

Vorteile Auch ohne Anästhesie möglich.

Auch bei *Ch.villosus, Ch.vellerosus* und *D.hybridus* gut zu punktieren (eig. Beob.; G.Pérez Jimeno, pers. Mitt.).

V. femoralis

(= V. saphena) Verläuft über die Medialfläche der Tibia und ist auch ohne Stauung sichtbar.

Vorteile
Kann auch ohne Anästhesie punktiert werden.
Eignet sich für Blutprobenentnahme (2 bis 4ml), Infusionen, Katheter.

Nachteile
Liegt in der Tiefe und rollt gerne weg.

Anmerkung
Auch für *E.sexinctus* beschrieben (Opromolla et al., 1980).
Bei *Ch.villosus* weder zu sehen noch leicht zu punktieren (eig. Beob.).

V. cephalica

Verlauf und Punktionstechnik vergleichbar mit Hund oder Katze.

Nachteile
Nur nach Stauung proximal des Ellbogens sichtbar.
Stauung wegen des Panzers nicht einfach, kurzer Unterarm schwierig zu halten.

V. jugularis

Kranial der Klavikula Druck ausüben, Kanüle 1cm kranial der Klavikula und bei 1/3 der Strecke zwischen Mediane und Panzerrand lateral der Medianen einstechen.

Nachteile
Weder adspektorisch noch palpatorisch identifizierbar, kollabiert gerne.

Herzpunktion

Herz mittels digitaler Palpation lokalisieren, 18 gauge, 1.5 inch - Kanüle lateral der Medianen einstechen.

Nachteile
Risiko von Todesfällen.

3.8.4 Injektionsstellen

Intradermal

Ins Oberlid

Subkutan

Unter den Panzerrand

Intramuskulär

In die Hintergliedmasse oder die Rückenmuskulatur, indem die Kanüle paramedian zwischen zwei Bändern eingeführt wird (Szabuniewicz und Mc Grady, 1969).

Knochenmarkspunktion

Im rostralen Teil der Dermalplättchen der Gürtel.
Eine gründliche Reinigung der Injektionsstelle ist wichtig zur Verhinderung von Abszessen, welche v.a. unter dem Panzer schlecht zu erkennen sind.

3.8.5 Untersuchung

Auskultation: Zur Lungenauskultation kann der Panzer wie bei Schildkröten mit einem feuchten Tuch bedeckt werden, um Kratzgeräusche des Stethoskops zu vermeiden (eig. Beob.).

Kotuntersuchung: Gürteltiere setzen meist Kot ab, wenn sie in Stress versetzt werden. Deshalb ist zu empfehlen, beim Einfangen einen entsprechenden Behälter bereitzuhalten (G.Lemus, pers. Mitt.).
3.9 Erkrankungen in Menschenobhut

3.9.1 Allgemeine Bemerkungen

Alle im Kapitel “Krankheiten von Wildtieren“ auf Seite 91 erwähnten Erkrankungen können auch in Menschenobhut auftreten, werden an dieser Stelle jedoch nicht nochmals aufgeführt.

Auf die Wichtigkeit eines geeigneten Geheges und die Gefahren eines inadäquaten Untergrunds wurde bereits im Kapitel “Gehege“ auf Seite 107 hingewiesen.

Frischimporte von *Tolypeutes matacus* leiden gemäss Meritt (1976a) oft an Erkrankungen des Respirationstrakts und an Dehydratation. Als erste Massnahme empfiehlt Meritt eine Therapie mit 6-10ml/kg Elektrolytlösung mit 1% Dextrose und Antibiotika, zweimal täglich s.c.

Eine Isolierung kranker oder verletzter Tiere ist sehr wichtig. Offene Wunden und frisches Blut werden von Artgenossen beleckt oder führen gar zu Kannibalismus, was nicht nur die Heilung verhindert, sondern auch in Mutilationen oder Tod enden kann.

Naht: Beim Wundverschluss ist zu bedenken, dass die Wundheilung wegen des langsamen Metabolismus verzögert ist. Dank ihren kräftigen Krallen ist es den Gürteltieren ein Leichtes, die Nähte auszureissen, weshalb eine gute Wundabdeckung unabdingbar ist (Murray und Schaeffer, 1987).

Die Regeneration der Knochenplättchen geht sehr rasch vor sich; bei *Priodontes maximus* (und anderen Arten?) werden innert Tagen hellere Knochenplättchen sichtbar, die sich mit der Zeit verdunkeln (S.Arzuaga, pers. Mitt.).
3.9.2 Dermatopathien

und Futterplatz aufzustellen, damit die Pfoten regelmässig befeuchtet werden (Divers, 1978). In schweren Fällen kann die Amputation der betroffenen Gliedmasse nötig sein.

Zehenfraktur: Eine Amputation ist meist die einzige mögliche Therapie (aus der Umfrage).

3.9.3 **Erkrankungen des Verdauungstrakts**

Deformierte oder zu lange Zähne: Eine Zahnextraktion bzw. das Abschleifen der Zähne muss unbedingt von einem Futterwechsel begleitet werden, da die Ursache von Zahnproblemen oft die ungenügende Abnutzung derselben ist. In die Diät sollten härtere Futterstücke wie Früchte, Küken, Insekten o.ä. eingeschlossen werden, damit die Tiere ihre Nahrung kauen müssen (aus der Umfrage).

Zungenverletzung: Sehnen oder Fleischfasern im Futter können sich um die Zunge von Gürteltieren wickeln und diese einschnüren. Als Symptome fallen eine Verweigerung der Futteraufnahme und eine Depression auf. Präventiv ist eine gute Kontrolle des Futters wichtig (aus der Umfrage).

Anorexie und Abmagerung: Als Symptome einer ungenügenden Futteraufnahme wurden eine Abflachung des konvexen Panzers, die

Kachexie: Bei kachektischen Tieren kann eine Zwangsernährung mit Sonde nötig sein. Bei *T. matacus* ist eine Sonde mit einem Durchmesser von 2.0mm angebracht (G.Solís, pers. Mitt.). Bei fehlender Angewöhnung ans Futter siehe das Kapitel “Adaptation” auf Seite 120.

Rektumprolaps: Nach Applikation einer gesättigten Zuckerlösung kann eine manuelle Reposition mit Fixierung mittels einer externen Naht versucht werden. Die Erfolgsrate ist jedoch niedrig (aus der Umfrage).

3.9.4 Mangelkrankungen

Hypovitaminose K: Siehe auch das Kapitel “Vitamin K” auf Seite 120. Als Symptome wurden Hämatome, Hämorrhagien und Epistaxis verzeichnet. Eine erfolgbringende Therapie ist die Injektion von Vitamin K, z.B. 0.5ml Konakion. Zusätzlich sollte das Futter auch über die Heilung hinaus supplementiert werden. Oft sterben die Tiere unerwartet; bei der Sektion werden dann multiple Hämorrhagien, z.B. ein Hämoperitoneum festgestellt (aus der Umfrage).

Hypovitaminose E: Eine Therapie der Weismuskelkrankheit mit Vitamin E und Selen bringt nur selten den erwünschten Erfolg (aus der Umfrage).
Hypokalzämie: Die Behandlung mit Kalzium- und Vitamin D3-Verabreichungen und Sonnenexposition setzt meist zu spät ein (aus der Umfrage).

3.9.5 Erkrankungen des Respirationstrakts

3.9.6 Erkrankungen des Urogenitaltrakts

Pathologien des Reproduktionstrakts scheinen bei Gürteltieren recht selten zu sein. Der in der Umfrage gemeldete Fall einer Prostatitis konnte mit Cefalexin erfolgreich behandelt werden. Bei weiblichen Tieren sind zwei Fälle von Pyometra, eine hämorrhagische Metritis und in einem Fall Ovarialzysten aufgetreten. All diese Veränderungen wurden erst nach dem Tod der Tiere erkannt (aus der Umfrage).

Es ist nicht bekannt, ob die recht häufigen Nephritiden tatsächlich keine Symptome hervorrufen oder diese aufgrund mangelnder Beobachtung nur selten am lebenden Tier festgestellt werden. Alle Nierenentzündungen und Nephrosen wurden erst bei der Sektion diagnostiziert (aus der Umfrage).
Nierenversagen ist gemäss J.Gramieri (pers. Mitt.) eine häufige Todesursache bei alten Gürteltieren.

3.9.7 **Neurologische Erkrankungen**

Konvulsionen: Cockman-Thomas (1993) empfiehlt bei *D.novemcinctus* die Verabreichung von 5mg Diazepam i.m.

3.9.8 **Parasiten**

Wie bereits im allgemeinen Teil erwähnt, ist nicht bekannt, ob die bei Wildtieren vorkommenden Parasiten klinische Manifestationen auslösen. Sie können jedoch in der Quarantäne oder während der Labor- oder Zoohaltung zu einem Problem werden, wenn Stress, Platzmangel, ungewohntes Futter oder konstante Reinfestation das zwischen Wildtieren und Parasiten bestehende Gleichgewicht stören.

3.9.8.1 **Ektoparasiten**

In Hautgeschabseln derselben Tiere waren kleine, grabende, sarcoptiforme Milben der Art *Echimyopus dasypus* erkennbar. Diese lösten eine Räude aus mit grossflächigen, trockenen, krümeligen Borken an Hals, Thorax und Abdomen; die Haut an den betroffenen Stellen war verdickt. Zur Therapie wurden die betroffenen Hautstellen am Tag 1, 4 und 10 mit einer 2,5% Monosulfiram-Lösung (Tetmosol®) aufgeweicht und die Krusten mit einer kleinen Bürste entfernt. Eine Woche später war die vollständige Heilung erreicht (Baskerville und Francis, 1981).
3.9.8.2 Endoparasiten

In Zoos werden Infestationen mit *Trichostrongylidae*, *Strongyloides* und *Coccidia* am häufigsten diagnostiziert. Auch *Capillaria*, *Trichuris*, *Ascarididae*, *Trematoda* und *Toxoplasma* wurden beschrieben (aus der Umfrage).

3.9.9 Mykosen

Sporothrix schenckii: Obwohl bei Wildtieren keine Infektion mit diesem Saprophyten diagnostiziert werden konnte (siehe Kapitel “Zoonosen” auf Seite 155), sind mehrere Fälle von spontanen disseminierten systemischen

Der dritte Fall von Sporotrichose trat in der Quarantänestation eines Zoos auf. Das plötzlich gestorbene Tier wies eine ca. 6cm grosse Ulzeration an der rechten Flanke und mehrere lineare Ulzerationen entlang der Gürtel, multiple disseminierte Hämorrhagien der Lunge und eine hyperämische geschwollene Milz auf (Wenker et al., 1998).

3.9.10 Anderes

Heuallergie: Diese wurde bei einem *T.matacus* diagnostiziert, welches Hyperaktivität zeigte. Eine Haltungsänderung brachte die erhoffte Besserung (aus der Umfrage).

Metabolische Knochendefizienz: Aufgrund des gehäuften Auftretens bei einer Familie von *Dasypus novemcinctus* wird vermutet, dass diese Erkrankung genetisch bedingt ist. Mit 7 bis 8 Monaten litten die Tiere an multiplen pathologischen Frakturen und waren allgemein weniger aktiv als die anderen unter identischen Bedingungen gehaltenen Exemplare. Auffällig war, dass die betroffenen Tiere zur Entlastung häufig rückwärts liefen. Auf Röntgenbildern liessen sich ein sehr dünner Kortex und die multiplen
Frakturen erkennen. Trotz einer Kalzium-Supplementation starben alle Tiere im Laufe ihres ersten Lebensjahres (aus der Umfrage).

Erwähnenswert sind auch die zyklischen Anämien, welche in fünf Gürteltieren desselben Zoos beobachtet wurden und allesamt weibliche Tiere betrafen. Die Ursache dieser Anämien ist unbekannt (aus der Umfrage).

3.9.11 Pharmakologie

3.9.11.1 Allgemeines

Der niedrige Metabolismus von Gürteltieren kann bewirken, dass sich die Wirkungsdauer von Medikamenten verlängert.

3.9.11.2 Anästhesie

Tabelle 10: Injektionsanästhesie

<table>
<thead>
<tr>
<th>Wirkstoff</th>
<th>Dosis (mg/kg)</th>
<th>Applikationsart</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamin-Hydrochlorid</td>
<td>15</td>
<td>i.m.</td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td></td>
<td>20-30</td>
<td>i.m.</td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>i.m.</td>
<td>(Czekala et al., 1980; Barr et al., 1991)</td>
</tr>
<tr>
<td>Sedation:</td>
<td>10-20</td>
<td>i.m.</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>Längere Eingriffe:</td>
<td>25</td>
<td>i.m.</td>
<td>(Wilson et al., 1984)</td>
</tr>
<tr>
<td></td>
<td>10 initial,</td>
<td>i.m.</td>
<td>(Baliña et al., 1975)</td>
</tr>
<tr>
<td></td>
<td>5 Erhaltung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natrium-Pentobarbital</td>
<td>20-30</td>
<td>i.p./i.v.</td>
<td>(Dhindsa et al., 1971; Yaeger, 1988)</td>
</tr>
<tr>
<td>Droperidol + Fentanyl (Innovar-Vet®)</td>
<td>0.20 - 0.25ml/kg</td>
<td>i.m.</td>
<td>(Wallach und Boever, 1983)</td>
</tr>
<tr>
<td></td>
<td>0.11ml/kg</td>
<td></td>
<td>(Storrs, 1987)</td>
</tr>
</tbody>
</table>

Tabelle 11: Injektionsanästhesie; Kombinationen

<table>
<thead>
<tr>
<th>Wirkstoff 1</th>
<th>Dosis (mg/kg)</th>
<th>Wirkstoff 2</th>
<th>Dosis (mg/kg)</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamin</td>
<td>10-20 i.m.</td>
<td>Diazepam</td>
<td>0.1 i.m. /i.v.</td>
<td>(Gillespie, 1993)</td>
</tr>
<tr>
<td>Ketamin</td>
<td>10-20 i.m.</td>
<td>Acepromazin</td>
<td>0.1 i.m.</td>
<td>(Gillespie, 1993)</td>
</tr>
<tr>
<td>Ketamin</td>
<td>25</td>
<td>Acepromazin</td>
<td>0.3</td>
<td>(Herbst et al., 1989)</td>
</tr>
<tr>
<td>Ketamin</td>
<td>4.5</td>
<td>Acepromazin</td>
<td>5.0 mg</td>
<td>(Storrs, 1987) *</td>
</tr>
<tr>
<td>Ketamin</td>
<td>40</td>
<td>Xylazin</td>
<td>1.0</td>
<td>(Fournier-Chambrillon et al., 2000)</td>
</tr>
<tr>
<td>Ketamin</td>
<td>7.5</td>
<td>Medetomidin**</td>
<td>75 μg/kg</td>
<td></td>
</tr>
<tr>
<td>Tiletamin</td>
<td>8.5</td>
<td>Zolazepam</td>
<td>8.5</td>
<td></td>
</tr>
</tbody>
</table>

* Zur Sedation bei *D. novemcinctus*

** Antagonisierbar mit Atipamezol (fünffache Dosis des Medetomidins)
Prämedikation mit Atropin

Bei Allgemeinanästhesien mit Ketamin-HCl oder Innovar-Vet® verhindert eine Prämedikation mit 0.02-0.04mg/kg Atropin das verstärkte Speicheln (Divers, 1978; Storrs, 1987; Gillespie, 1993). Als Alternative kann Glykopyrrolat in einer Dosis von 0.11mg/kg i.m. verabreicht werden (R.Aguilar, pers. Mitt.).

Inhalationsanästhesie

Eine Intubation ist möglich mit einem Polyethylen-Tubus; für Dasypus novemcinctus ist ein solcher mit einem Durchmesser von 0.6 bis 1.3cm angebracht (Divers, 1978).

Dosierungen:

Isofluran: Einleitung 3-5%, Erhaltung 1-2%
Halothan: Einleitung 3-5%, Erhaltung 2-2.5%

Als Komplikationen bei Isofluran-Anästhesien wurden eine periodische Apnoe und Atemdepressionen verzeichnet (aus der Umfrage).
3.9.11.3 Antibiotika
Antibiotika werden i.d.R. in der für Katzen empfohlenen Dosis verwendet (Tabelle 12).

<table>
<thead>
<tr>
<th>Wirkstoff</th>
<th>Dosis mg/kg</th>
<th>Frequenz</th>
<th>Dauer</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxytetracyklin</td>
<td>7-10</td>
<td></td>
<td></td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td>Tetrazyklin</td>
<td>10-20</td>
<td>BID</td>
<td>5-10d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>50</td>
<td>BID</td>
<td>5-10d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>Trimethoprim-Sulfonamid</td>
<td>7</td>
<td>BID</td>
<td>3d</td>
<td>(Kaplan et al., 1982)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>67</td>
<td>BID</td>
<td>5-7d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>25-75 ¹</td>
<td>BID</td>
<td>10d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td></td>
<td>50-100 ²</td>
<td>BID</td>
<td>10d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>10-20</td>
<td>BID</td>
<td>5-10d</td>
<td>(Diniz et al., 1997)</td>
</tr>
</tbody>
</table>

¹ Bakterielle Enteritis
² Respiratorische Infekte

3.9.11.4 Antiparasitika
Gegen Endoparasiten können alle üblichen Antiparasitika angewendet werden (siehe Tabelle 13).

Die Injektion von Ivermectin scheint bei Dasypus hybridus häufig zu Abszessen zu führen; bei Chaetophractus villosus ist dieses Problem nicht aufgetreten (J.C.Sassaroli, pers. Mitt.).
Tabelle 13: Antiparasitika

<table>
<thead>
<tr>
<th>Wirkstoff</th>
<th>Dosis mg/kg</th>
<th>Applikationsart</th>
<th>Frequenz</th>
<th>Dauer</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin</td>
<td>2</td>
<td>i.m.</td>
<td></td>
<td></td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td>Pyrantel</td>
<td>5</td>
<td>p.o.</td>
<td></td>
<td></td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td>Pyrantelpamoat</td>
<td>7.5</td>
<td>p.o.</td>
<td>SID</td>
<td>3d</td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td>Metronidazol</td>
<td>50</td>
<td>BID</td>
<td></td>
<td>5-7d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>Tinidazol</td>
<td>50</td>
<td>BID</td>
<td></td>
<td>5d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>Thiabendazol</td>
<td>50-100</td>
<td>p.o.</td>
<td></td>
<td>4d</td>
<td>(Meritt, 1976a)</td>
</tr>
<tr>
<td>Mebendazol</td>
<td>15</td>
<td>p.o.</td>
<td></td>
<td>5d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td>Fenbendazol</td>
<td>50</td>
<td>p.o.</td>
<td></td>
<td>3d</td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td>Levamisold</td>
<td>10</td>
<td>p.o./i.m.</td>
<td>2x innert</td>
<td>7d</td>
<td>(Diniz et al., 1997)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>s.c.</td>
<td>2x innert</td>
<td>7d</td>
<td>(Kazda, 1981)</td>
</tr>
<tr>
<td>Piperazin</td>
<td>80-100</td>
<td>p.o.</td>
<td>wiederholt</td>
<td></td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td>Praziquantel</td>
<td>1 Tabl.</td>
<td>p.o.</td>
<td>SID</td>
<td>3d</td>
<td>(aus der Umfrage)</td>
</tr>
<tr>
<td>Combantrin®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Gillespie, 1993)</td>
</tr>
</tbody>
</table>

Tabl. = Tablette
3.10 Zoonosen
Aufgrund seiner Bedeutung wurde *Mycobacterium leprae* in einem speziellen Kapitel auf Seite 100 besprochen.

Salmonellen-Infektionen bei Gürteltieren werden in der Literatur selten erwähnt. Eine Untersuchung von wildlebenden *D.hybridus* und *Ch.villosus* in Argentinien ergab eine Inzidenz von 65% bzw. 58%, was auf eine hohe Sensitivität der Gürteltiere bezüglich einer Kontamination mit Salmonellen schliessen lässt. In der erwähnten Studie lagen die Ergebnisse der Typisierung nicht vor, weshalb nicht gesagt werden kann, ob es sich hierbei
um Pathogene handelte und von Gürteltieren eine zoonotische Gefahr ausgeht oder ob diese als Reservoirs für Salmonellen dienen. Vorsichtsmassnahmen beim Umgang mit Wildfängen und in der Quarantäne sind jedoch ohne Zweifel angebracht (Quevedo et al., 1978).

Chagas-Krankheit ist deshalb fragwürdig. Auch aus folgenden Arten wurde *T. cruzi* isoliert: *C. centralis*, *C. uncinctus*, *C. tatuay*, *Ch. villosus*, *Ch. vellerosus*, *D. kappleri*, *D. sabanicola*, *E. sexcinctus*, *T. matacus* und *Z. pichiy* (Barretto und Ribeiro, 1979; Barreto et al., 1985; Shaw, 1985; Fujita et al., 1994).
4 Resultate der Umfrage

4.1 Allgemeines

Tabelle 14: Allgemeine Daten

<table>
<thead>
<tr>
<th>Ausgesandte Fragebögen</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davon eingegangen</td>
<td>45 (= 59.2%)</td>
</tr>
<tr>
<td>aus Europa</td>
<td>12 (= 26.7%)</td>
</tr>
<tr>
<td>aus Südamerika</td>
<td>8 (= 17.8%)</td>
</tr>
<tr>
<td>aus Mittelamerika</td>
<td>5 (= 11.1%)</td>
</tr>
<tr>
<td>aus den USA</td>
<td>20 (= 44.4%)</td>
</tr>
<tr>
<td>Auswertbare Antworten</td>
<td>44</td>
</tr>
</tbody>
</table>

4.2 Gürteltierarten

Dasypus novemcinctus ist die mit Abstand am häufigsten gehaltene Art (Abbildung 1). Drei analysierte Zoos sind in der Abbildung nicht berücksichtigt, da in diesen zur Zeit keine Gürteltiere gehalten werden.
Abbildung 1: Häufigkeit der Gürteltier-Arten in Zoos

4.3 Haltungsformen

32 Zoos (51.6%) halten Gürteltiere einzeln. In 37 Haltungen (59.7%) sind mehrere Exemplare im selben Gehege untergebracht.

Tabelle 15: Gruppenzusammensetzung

<table>
<thead>
<tr>
<th>Mä : We</th>
<th>Zoos</th>
<th>Mä : We</th>
<th>Zoos</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : 2</td>
<td>3</td>
<td>2 : 1</td>
<td>2</td>
</tr>
<tr>
<td>0 : 3</td>
<td>2</td>
<td>2 : 2</td>
<td>3</td>
</tr>
<tr>
<td>1 : 1</td>
<td>14</td>
<td>3 : 0</td>
<td>1</td>
</tr>
<tr>
<td>1 : 2</td>
<td>5</td>
<td>3 : 1</td>
<td>2</td>
</tr>
<tr>
<td>1 : 3</td>
<td>2</td>
<td>3 : 3</td>
<td>1</td>
</tr>
<tr>
<td>2 : 0</td>
<td>1</td>
<td>10*</td>
<td>1</td>
</tr>
</tbody>
</table>

* keine Geschlechtsangabe
Bei der Gruppenhaltung überwiegt die Kombination eines Männchens mit einem Weibchen. Die größte in einem Zoo registrierte Gürteltier-Gruppe umfasst 10 Tiere (Tabelle 15).

Tabelle 16: Gehegefläche pro Einzeltier in m²

<table>
<thead>
<tr>
<th>Tierarten</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabassous centralis (n=1)</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Cabassous unicinctus (n=1)</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Chaetophractus vellerosus (n=2)</td>
<td>8.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Chaetophractus villosus (n=1)</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Dasypus novemcinctus (n=10)</td>
<td>7.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Euphractus sexcinctus (n=3)</td>
<td>6.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Tolypeutes matacus (n=11)</td>
<td>2.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Tolypeutes tricinctus (n=1)</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Zaedyus pichiy (n=1)</td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td>Alle Arten (n=30)</td>
<td>5.7</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Die Gehegegrösse, welche Einzeltieren zur Verfügung steht, variiert zwischen 0.4m² und 18m² (Tabelle 16). Im Durchschnitt misst ein Einzelgehege 5.7m².

Die Angaben zur Fläche pro Tier in Gruppenhaltung (Tabelle 17) sind folgendermassen zu verstehen: Der berechnete Wert gibt die Grundfläche für das erste Tier an, für jedes weitere Tier müssen 50% dazugerechnet werden. In Gruppen gehaltenen Tieren steht eine grössere Gehegefläche zur Verfügung als Einzeltieren. Für das erste Tier sind mindestens 0.8m², höchstens 24.0m² und durchschnittlich 6.7m² Fläche bemessen.
Tabelle 17: Gehegefläche pro Tier in Gruppenhaltung in m²

<table>
<thead>
<tr>
<th>Tierarten</th>
<th>(n)</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabassous unicinctus</td>
<td>1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Chaetophractus vellerosus</td>
<td>2</td>
<td>2.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Chaetophractus villosus</td>
<td>9</td>
<td>9.1</td>
<td>24.0</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>23</td>
<td>6.9</td>
<td>18.5</td>
</tr>
<tr>
<td>Dasypus hybridus</td>
<td>4</td>
<td>10.3</td>
<td>13.3</td>
</tr>
<tr>
<td>Euphractus sexcinctus</td>
<td>1</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Tolypeutes matacus</td>
<td>7</td>
<td>2.7</td>
<td>5.3</td>
</tr>
<tr>
<td>Alle Arten</td>
<td>47</td>
<td>6.7</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Tabelle 18: Untergrund und Gehegeeinrichtung

<table>
<thead>
<tr>
<th>Untergrund:</th>
<th>Zoos</th>
<th>Gehegeeinrichtung:</th>
<th>Zoos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton</td>
<td>45</td>
<td>Holzblöcke / Baumstämme</td>
<td>43</td>
</tr>
<tr>
<td>Holzschnitzel</td>
<td>29</td>
<td>(Künstliche) Steine</td>
<td>31</td>
</tr>
<tr>
<td>Erde</td>
<td>28</td>
<td>Boxe</td>
<td>23</td>
</tr>
<tr>
<td>Sand</td>
<td>21</td>
<td>Heu</td>
<td>19</td>
</tr>
<tr>
<td>Rindenkompost</td>
<td>16</td>
<td>Bademöglichkeit</td>
<td>15</td>
</tr>
<tr>
<td>Torfmull</td>
<td>10</td>
<td>Stroh</td>
<td>12</td>
</tr>
<tr>
<td>Laub</td>
<td>4</td>
<td>Wärmelampe</td>
<td>10</td>
</tr>
<tr>
<td>Papierschnitzel</td>
<td>3</td>
<td>PVC-Rohre</td>
<td>7</td>
</tr>
<tr>
<td>Sägemehl</td>
<td>2</td>
<td>Tücher</td>
<td>5</td>
</tr>
<tr>
<td>Maiskolbenhäcksel</td>
<td>2</td>
<td>(Künstliche) Pflanzen</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schachteln, Schuhe, Bälle</td>
<td>4</td>
</tr>
</tbody>
</table>

(Mehrfachnennungen möglich; ausgewertete Antworten: 62)

In den meisten Haltungen besteht der Untergrund aus Beton, welcher mit Holzschnitzeln, Erde oder Sand bedeckt ist (Tabelle 18). Alternativ zum Beton werden Plastikwanen oder Metallplatten verwendet, oder die Tiere leben in

Tabelle 19: Abwechslung

<table>
<thead>
<tr>
<th>Zoos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>13</td>
</tr>
<tr>
<td>Nein</td>
<td>49</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
</tr>
</tbody>
</table>

Tabelle 20: Grabemöglichkeit

<table>
<thead>
<tr>
<th>Zoos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>55</td>
</tr>
<tr>
<td>Nein</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
</tr>
</tbody>
</table>

Die Daten zur Reinigung des Geheges (Tabelle 21) sind aufgrund ungenauer Fragestellung verwirrend. Mit der von 32 Zoos durchgeführten täglichen Reinigung ist das "spot-cleaning" gemeint, wohingegen z.B. mit der jährlichen Reinigung die Häufigkeit der Entfernung aller Einstreu mit Desinfektion des Geheges angegeben wurde.

Tabelle 21: Reinigung des Geheges

<table>
<thead>
<tr>
<th>Zoos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Täglich</td>
<td>32</td>
</tr>
<tr>
<td>Zweimal pro Woche</td>
<td>3</td>
</tr>
<tr>
<td>Wöchentlich</td>
<td>12</td>
</tr>
<tr>
<td>Zweimal pro Monat</td>
<td>8</td>
</tr>
<tr>
<td>Monatlich</td>
<td>3</td>
</tr>
<tr>
<td>Jährlich</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
</tr>
</tbody>
</table>
4.4 Fütterung

Tabelle 22: Fütterungsfrequenz

<table>
<thead>
<tr>
<th>Frequenz</th>
<th>Zoos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zweimal täglich</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>Täglich</td>
<td>47</td>
<td>77</td>
</tr>
<tr>
<td>Sechsmal pro Woche</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>100</td>
</tr>
</tbody>
</table>

In 77% der Zoos werden die Gürteltiere einmal täglich gefüttert (Tabelle 22). Die geläufigste Diät besteht aus einer Mischung aus Rindfleisch oder Hundefutter, Früchten und Eiern, welche mit Mineralstoffen und Vitaminen supplementiert wird (Tabelle 23). Selten werden auch ungewöhnlichere Ingredienzen wie Käse, Fisch oder Nüsse beigegeben.

Die Zufütterung von Insekten, vor allem Mehlwürmern, ist bei über der Hälfte der Zoos üblich. 55% der Haltungen verabreichen regelmässig Vitamin K.
Analysierte Rezepte	Total	Rindfleisch	Pferdefleisch	Pouletfleisch	Herz	Küken	Leber	Hundedosenfutter	Katzendosenfutter	Katzentrockenfutter	Mischung für Affen	Birds of Prey Diet®	Ei	Gemüse	Früchte	Magerquark	Milch	Milchpulver	Kondensmilch	Käse	Joghurt	
	41	15 64%	2 2%	6 5%	3 7%	3 8%	1 1%	5 4%	5 12%	5 5%	4 7%	1 1%	29 63%	16 22%	32 79%	4 9%	1 2%	1 17%	4 19%	2 6%	1 2%	2 17%
		3 100%	1 50%	1 50%	1 50%	1 50%	1 14%	1 14%	2 67%	2 100%	1 14%	1 14%	2 100%	15 61%	61 62%	7 100%	5 100%	1 50%	1 100%	1 100%	1 50%	1 50%

Tabelle 23: Futterzusammensetzung in Zoologischen Gärten

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>E. sexcinctus</th>
<th>Ch. vellerosus</th>
<th>Ch. villosus</th>
<th>(alle)</th>
<th>T. matalus</th>
<th>D. hybridus</th>
<th>D. novemcinctus</th>
<th>(alle)</th>
<th>P. maximus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rindfleisch</td>
<td>15</td>
<td>1 33%</td>
<td>1 50%</td>
<td>5 71%</td>
<td>51%</td>
<td>1 100%</td>
<td>5 25%</td>
<td>42%</td>
<td>2 100%</td>
<td></td>
</tr>
<tr>
<td>Pferdefleisch</td>
<td>2</td>
<td>1 14%</td>
<td>1 14%</td>
<td>1 14%</td>
<td>5%</td>
<td>1 5%</td>
<td>1 5%</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pouletfleisch</td>
<td>6</td>
<td>1 14%</td>
<td>2 29%</td>
<td>10%</td>
<td></td>
<td>4 20%</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herz</td>
<td>3</td>
<td>1 50%</td>
<td>2 29%</td>
<td>10%</td>
<td>17%</td>
<td>2 10%</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Küken</td>
<td>3</td>
<td>1 50%</td>
<td>1 14%</td>
<td>21%</td>
<td></td>
<td>1 5%</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leber</td>
<td>1</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td>1 5%</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hundedosenfutter</td>
<td>5</td>
<td>1 14%</td>
<td>1 14%</td>
<td>5%</td>
<td></td>
<td>4 20%</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katzendosenfutter</td>
<td>5</td>
<td>1 14%</td>
<td>1 14%</td>
<td>5%</td>
<td>1 17%</td>
<td>3 15%</td>
<td>11%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katzentrockenfutter</td>
<td>5</td>
<td>1 14%</td>
<td>1 14%</td>
<td>5%</td>
<td>1 17%</td>
<td>3 15%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mischung für Affen</td>
<td>4</td>
<td>1 50%</td>
<td>1 50%</td>
<td>5%</td>
<td>1 17%</td>
<td>3 15%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birds of Prey Diet®</td>
<td>1</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td>1 5%</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ei</td>
<td>29</td>
<td>2 100%</td>
<td>6 86%</td>
<td>62%</td>
<td></td>
<td>3 50%</td>
<td>1 100%</td>
<td>16 80%</td>
<td>77%</td>
<td>1 50%</td>
</tr>
<tr>
<td>Gemüse</td>
<td>16</td>
<td>1 50%</td>
<td>3 43%</td>
<td>31%</td>
<td></td>
<td>4 67%</td>
<td>8 40%</td>
<td>36%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Früchte</td>
<td>32</td>
<td>1 50%</td>
<td>5 71%</td>
<td>79%</td>
<td></td>
<td>6 100%</td>
<td>15 75%</td>
<td>58%</td>
<td>2 100%</td>
<td></td>
</tr>
<tr>
<td>Magerquark</td>
<td>4</td>
<td>1 50%</td>
<td>2 29%</td>
<td>26%</td>
<td></td>
<td>1 5%</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milch</td>
<td>1</td>
<td>1 14%</td>
<td></td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milchpulver</td>
<td>4</td>
<td>1 50%</td>
<td></td>
<td>17%</td>
<td></td>
<td>1 17%</td>
<td>1 100%</td>
<td>1 5%</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td>Kondensmilch</td>
<td>2</td>
<td>1 50%</td>
<td></td>
<td>17%</td>
<td></td>
<td>1 5%</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Käse</td>
<td>1</td>
<td>1 14%</td>
<td></td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joghurt</td>
<td>2</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Futterzusammensetzung in Zoologischen Gärten (Fortsetzung)

<table>
<thead>
<tr>
<th>Analysierte Rezepte</th>
<th>Total</th>
<th>Karnivoren – Omnivoren</th>
<th>Opportunistische Insektrivoren</th>
<th>Insektrivoren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E. sexcinctus</td>
<td>Ch. vellerosus</td>
<td>Ch. villosus</td>
</tr>
<tr>
<td>Mehlwürmer</td>
<td>21</td>
<td>2</td>
<td>67%</td>
<td>1</td>
</tr>
<tr>
<td>Grillen</td>
<td>6</td>
<td>6</td>
<td>6%</td>
<td>1</td>
</tr>
<tr>
<td>Andere Insekten</td>
<td>8</td>
<td>1</td>
<td>33%</td>
<td>1</td>
</tr>
<tr>
<td>Fisch</td>
<td>2</td>
<td>2</td>
<td>6%</td>
<td>1</td>
</tr>
<tr>
<td>Reis</td>
<td>3</td>
<td>20%</td>
<td>2</td>
<td>29%</td>
</tr>
<tr>
<td>Müsli</td>
<td>7</td>
<td>11%</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>Nüsse</td>
<td>1</td>
<td>2%</td>
<td>1</td>
<td>14%</td>
</tr>
<tr>
<td>Honig</td>
<td>6</td>
<td>20%</td>
<td>1</td>
<td>14%</td>
</tr>
<tr>
<td>Erde</td>
<td>5</td>
<td>20%</td>
<td>1</td>
<td>14%</td>
</tr>
<tr>
<td>Ameisensäure 0.8%</td>
<td>1</td>
<td>1%</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Apfelessig</td>
<td>1</td>
<td>1%</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Fruchtsaft</td>
<td>3</td>
<td>2%</td>
<td>0%</td>
<td>3</td>
</tr>
<tr>
<td>Maisöl</td>
<td>1</td>
<td>1%</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Vitamine</td>
<td>21</td>
<td>70%</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>17</td>
<td>55%</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>Mineralstoffe</td>
<td>11</td>
<td>36%</td>
<td>2</td>
<td>29%</td>
</tr>
<tr>
<td>Kalzium</td>
<td>1</td>
<td>1%</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Carnicon®</td>
<td>1</td>
<td>6%</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>Fettsäuren</td>
<td>1</td>
<td>1%</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Fischmehl</td>
<td>1</td>
<td>2%</td>
<td>1</td>
<td>14%</td>
</tr>
<tr>
<td>Laxatone®</td>
<td>1</td>
<td>1%</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Hefe</td>
<td>2</td>
<td>6%</td>
<td>1</td>
<td>50%</td>
</tr>
</tbody>
</table>
4.5 Zucht

Tabelle 24: Zuchtprogramme

<table>
<thead>
<tr>
<th>Art</th>
<th>Zuchtprogramm (Zoos)</th>
<th>Zuchterfolg (Zoos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetophractus vellerosus</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Chaetophractus villosus</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Dasypus hybridus</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Tolypeutes matacus</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabelle 25: Zuchtgruppen

<table>
<thead>
<tr>
<th>Geschlechtsverhältnis</th>
<th>Zoos mit Zuchtprogramm: Zuchterfolg</th>
<th>Alle Zoos: Alle Gruppen * Zuchterfolg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mä : We</td>
<td>Ja</td>
</tr>
<tr>
<td>1 : 1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2 : 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 : 2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2 : 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 : 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 : 3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 : 3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Eine Altersgrenze für die Zucht lässt sich aufgrund der Ergebnisse der Umfrage nicht bestimmen (Daten nicht aufgeführt). Die ältesten Tiere, die erfolgreich zur Zucht eingesetzt wurden, waren 13 bzw. 23 Jahre (Männchen bzw. Weibchen), die jüngsten 1.5 bzw. 2 Jahre alt.

Tabelle 26: Trächtigkeitsuntersuchung

<table>
<thead>
<tr>
<th>Methode</th>
<th>Alle Zoos</th>
<th>davon Zoos mit Zuchtprogramm</th>
<th>davon Zoos mit Zuchterfolg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td>49</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Abdominale Palpation</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gewichtsveränderung</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Röntgen</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ultraschall</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Verhaltensänderung</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(Mehrfachnennungen möglich)

Die meisten Zoos führen keine Trächtigkeitsuntersuchung durch (Tabelle 26). Auch wenn die regelmässige Gewichtsbestimmung zu den häufigsten Techniken zur Trächtigkeitsdiagnose gehört, erwies sie sich laut einem Zoo bei *Tolypeutes matacus* als unzuverlässiges Kriterium.

Beim Chi-Quadrat-Test sind keine signifikanten Unterschiede bezüglich der Abhängigkeit des Zuchterfolgs von diversen Faktoren feststellbar, ausser gleiches Verhältnis Männchen zu Weibchen (Tabelle 27).
Tabelle 27: p-Werte im Chi-Quadrat-Test

<table>
<thead>
<tr>
<th>Zuchterfolg abhängig von:</th>
<th>Zoos mit Zuchtprogramm:</th>
<th>Alle Zoos:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nur Zuchtgruppen</td>
<td>Alle Gürteltiergruppen*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zuchterfolg</td>
<td>p-Wert</td>
<td>Zuchterfolg</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
</tr>
<tr>
<td>Gehegegrösse ≥ 8</td>
<td>Ja</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Stereotypien</td>
<td>Ja</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Grabemöglichkeit</td>
<td>Ja</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nistmöglichkeit</td>
<td>Ja</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Abwechslung</td>
<td>Ja</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Gruppenzusammensetzung:</td>
<td>Gleich</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>- Verhältnis Mä:We</td>
<td>Versch.</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>- Verhältnis Mä:We</td>
<td>Mehr Mä</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>verschieden</td>
<td>Mehr We</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Versch. = Verschieden

4.6 Pathologien und prophylaktische Massnahmen

Nicht bei allen Zoos ist eine Quarantäne üblich; 17% führen keine durch (siehe Tabelle 28). Bei der Quarantänedauer sind sehr grosse Unterschiede festzustellen; sie variiert zwischen 7 und 90 Tagen (Tabelle 29). 27 von 60 Zoos entwurmen ihre Gürteltiere regelmässig, sei es mit oder ohne vorheriger Kotuntersuchung (Tabelle 30). Auch bei der Häufigkeit der (klinischen) Untersuchung bestehen grosse Variationen (Tabelle 31).

<table>
<thead>
<tr>
<th>Tabelle 28: Quarantäne</th>
<th>Tabelle 30: Entwurmen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoos</td>
</tr>
<tr>
<td>Ja</td>
<td>50</td>
</tr>
<tr>
<td>Nein</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 29: Quarantänedauer</th>
<th>Tabelle 31: Anzahl Untersuchungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tage</td>
<td>Zoos</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
</tr>
</tbody>
</table>
Es wurden nur wenige prophylaktische Massnahmen registriert (Tabelle 32). Lediglich ein Zoo führt eine Leprakontrolle als Routinemassnahme während der Quarantäne durch. Sie ist aber bei mehreren Zoos bei Verdacht auf Lepra üblich.

Abbildung 2: Häufigkeit der Erkrankungen
Tabelle 33: Pathologien, nach Kategorien sortiert

<table>
<thead>
<tr>
<th>(INFIZIERTE) VERLETZUNGEN</th>
<th>107</th>
<th>FÜTTERUNGSFEHLER UND MANGELERKRANKUNGEN</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwanzverletzung</td>
<td>22</td>
<td>Kachexie</td>
<td>24</td>
</tr>
<tr>
<td>Hautwunde</td>
<td>19</td>
<td>Hypovitaminose K</td>
<td>21</td>
</tr>
<tr>
<td>Pfoten- / Krallenverletzung</td>
<td>18</td>
<td>Zahnprobleme</td>
<td>5</td>
</tr>
<tr>
<td>Panzerläsion</td>
<td>15</td>
<td>Hypovitaminose E</td>
<td>2</td>
</tr>
<tr>
<td>Maulverletzung</td>
<td>9</td>
<td>Dehydratation</td>
<td>2</td>
</tr>
<tr>
<td>Trauma</td>
<td>8</td>
<td>Hypokalzämie</td>
<td>1</td>
</tr>
<tr>
<td>Abszess</td>
<td>7</td>
<td>Hypovitaminose</td>
<td>1</td>
</tr>
<tr>
<td>Fraktur</td>
<td>3</td>
<td>Lipidstoffwechselstörung *</td>
<td>1</td>
</tr>
<tr>
<td>Diskushernie Schwanz</td>
<td>1</td>
<td>Obesitas</td>
<td>1</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1</td>
<td>Osteoarthritis + Hämorrhagie</td>
<td>1</td>
</tr>
<tr>
<td>Augenverletzung</td>
<td>1</td>
<td>Zungenverletzung</td>
<td>1</td>
</tr>
<tr>
<td>Nasenverletzung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innere Verletzungen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zu lange / abgebrochene Krallen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Verdachtsdiagnose

Pathologien, nach Kategorien sortiert (Fortsetzung):

<table>
<thead>
<tr>
<th>Erkrankungen des Verdauungstrakts</th>
<th>60</th>
<th>Generalisierte Infektionen</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Gastro-) Enteritis</td>
<td>34</td>
<td>Sepsis</td>
<td>27</td>
</tr>
<tr>
<td>Hepatopathie</td>
<td>7</td>
<td>Salmonellose</td>
<td>4</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>6</td>
<td>M. avium - Komplex</td>
<td>4</td>
</tr>
<tr>
<td>Salmonellose</td>
<td>4</td>
<td>Lepra *</td>
<td>2</td>
</tr>
<tr>
<td>Darmruptur</td>
<td>2</td>
<td>Peritonitis</td>
<td>2</td>
</tr>
<tr>
<td>Rektumprolaps</td>
<td>2</td>
<td>Tetanus</td>
<td>2</td>
</tr>
<tr>
<td>Hepatopathie, Diabetogene Stoffwechsellage</td>
<td>1</td>
<td>Chylothorax</td>
<td>1</td>
</tr>
<tr>
<td>Dickdarmobstipation</td>
<td>1</td>
<td>Mediastinalabszess</td>
<td>1</td>
</tr>
<tr>
<td>Dünndarminfarkt</td>
<td>1</td>
<td>Pseudotuberkulose</td>
<td>1</td>
</tr>
<tr>
<td>Paroviroseverdacht</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gingivitis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erkrankungen des Respirationstrakts</th>
<th>40</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonie</td>
<td>30</td>
<td>Nephritis</td>
<td>14</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>5</td>
<td>Nierenversagen</td>
<td>5</td>
</tr>
<tr>
<td>Aspirationspneumonie</td>
<td>2</td>
<td>Nephrose</td>
<td>4</td>
</tr>
<tr>
<td>Chronische Lungenfibrose</td>
<td>1</td>
<td>Pyometra</td>
<td>2</td>
</tr>
<tr>
<td>Lungenemphysem</td>
<td>1</td>
<td>Hämorrhagische Metritis</td>
<td>1</td>
</tr>
<tr>
<td>Lungenödem</td>
<td>1</td>
<td>Hämorrhagische Zystitis</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harnblasenruptur mit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uroperitoneum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nierenstein</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ovarialzysten</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prostatitis</td>
<td>1</td>
</tr>
</tbody>
</table>

* Verdachtsdiagnose

Bei den einzelnen Krankheiten sind die Enteritiden (34 Fälle) am häufigsten, gefolgt von den Pneumonien (30 Fälle).
Pathologien, nach Kategorien sortiert (Fortsetzung):

<table>
<thead>
<tr>
<th>PARASITOSEN</th>
<th>25</th>
<th>ANDERES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwurmung</td>
<td>21</td>
<td>Zyklische Anämie</td>
</tr>
<tr>
<td>Myiasis</td>
<td>2</td>
<td>Metabolische Knochendefizienz</td>
</tr>
<tr>
<td>Toxoplasmose</td>
<td>2</td>
<td>Fruchtwasseraspiration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNBEKANNTES TODESURSACHE</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbekannt</td>
<td>12</td>
</tr>
<tr>
<td>Unbekannt, perinatal</td>
<td>2</td>
</tr>
<tr>
<td>Hämolyse</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARASITOSEN</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwurmung</td>
<td>21</td>
</tr>
<tr>
<td>Myiasis</td>
<td>2</td>
</tr>
<tr>
<td>Toxoplasmose</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEUROLOGISCHE ERKRANKUNGEN</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epileptiformer Anfall</td>
<td>1</td>
</tr>
<tr>
<td>Meningitis nach Otitis media</td>
<td>1</td>
</tr>
<tr>
<td>Paralyse Hintergliedmassen</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEOPLASIEN</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Virale *) Papillome</td>
<td>2</td>
</tr>
<tr>
<td>Adenokarzinom *</td>
<td>1</td>
</tr>
<tr>
<td>Nierenadenom</td>
<td>1</td>
</tr>
<tr>
<td>Adenomatöse Hyperplasie der Magenschleimhaut</td>
<td>1</td>
</tr>
<tr>
<td>Herzbasis - Tumor</td>
<td>1</td>
</tr>
<tr>
<td>Hyperkeratose am Schwanz</td>
<td>1</td>
</tr>
<tr>
<td>Lymphosarkom</td>
<td>1</td>
</tr>
<tr>
<td>Plattenepithelkarzinom</td>
<td>1</td>
</tr>
<tr>
<td>Pylorustumor</td>
<td>1</td>
</tr>
<tr>
<td>Uteruskarzinom</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KARDIOVASKULäre ERKRANKUNGEN</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herzversagen *</td>
<td>4</td>
</tr>
<tr>
<td>Schock</td>
<td>2</td>
</tr>
<tr>
<td>Kardiomyopathie</td>
<td>2</td>
</tr>
<tr>
<td>Anämie</td>
<td>1</td>
</tr>
<tr>
<td>DIC</td>
<td>1</td>
</tr>
<tr>
<td>Hirnblutung</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DERMATOPATHIEN</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatitis</td>
<td>6</td>
</tr>
<tr>
<td>Ulzerationen</td>
<td>3</td>
</tr>
</tbody>
</table>

* Verdachtsdiagnose

* Verdachtsdiagnose
4.7 Ethologie

Tabelle 35: Stereotypien

<table>
<thead>
<tr>
<th></th>
<th>Zoos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Nein</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabelle 36: Arten und Häufigkeit der Fehlverhalten

<table>
<thead>
<tr>
<th></th>
<th>Zoos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstantes Graben</td>
<td>15</td>
</tr>
<tr>
<td>Kreislaufen</td>
<td>11</td>
</tr>
<tr>
<td>Kannibalismus</td>
<td>9</td>
</tr>
<tr>
<td>Automutilationen</td>
<td>3</td>
</tr>
<tr>
<td>In Ecke trippeln</td>
<td>3</td>
</tr>
<tr>
<td>Wildes Herumrennen</td>
<td>1</td>
</tr>
<tr>
<td>An Schuh / Stiefel klammern</td>
<td>1</td>
</tr>
<tr>
<td>Hyperaktivität</td>
<td>1</td>
</tr>
<tr>
<td>Inaktivität</td>
<td>1</td>
</tr>
</tbody>
</table>
Resultate der Umfrage

Im Chi-Quadrat-Test sind keine signifikanten Unterschiede auf dem 95%-Signifikanzniveau festzustellen (Tabelle 37), vermutlich weil die analysierte Datenmenge zu klein ist. Hingegen ist eine Tendenz ersichtlich, dass die Fütterungsfrequenz einen Einfluss auf die Stereotypie-Häufigkeit hat. Auch Gürteltiere, welche an einem Zuchtprogramm teilnehmen, scheinen weniger zu stereotypieren. Eine weitere Tendenz ist bei der Gruppenzusammensetzung festzustellen.

Tabelle 37: p-Werte im Chi-Quadrat-Test

<table>
<thead>
<tr>
<th>Stereotypien abhängig von:</th>
<th>Stereotypien</th>
<th></th>
<th></th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ja</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Haltungsform</td>
<td>Einzelhaltung</td>
<td>16</td>
<td>16</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>Gruppenhaltung</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Gruppenzusammensetzung:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Verhältnis Mä : We</td>
<td>Gleich</td>
<td>11</td>
<td>14</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Verschieden</td>
<td>3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>- Verhältnis verschiednen</td>
<td>Nur Mä bzw. We</td>
<td>5</td>
<td>7</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Mehr Mä bzw. We</td>
<td>2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Gehegegrösse:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Einzeltier ≥ 8</td>
<td>Ja</td>
<td>5</td>
<td>3</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>- Gruppenhaltung ≥ 8</td>
<td>Ja</td>
<td>7</td>
<td>5</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>10</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Abwechslung</td>
<td>Ja</td>
<td>8</td>
<td>5</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>22</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Fütterungsfrequenz</td>
<td>Zweimal täglich</td>
<td>9</td>
<td>4</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Täglich</td>
<td>20</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Zuchtprogramm</td>
<td>Ja</td>
<td>5</td>
<td>11</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>25</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Verfütterung von lebenden Insekten</td>
<td>Ja</td>
<td>13</td>
<td>11</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
5 Diskussion

5.1 Sinn der Haltung von Gürteltieren in Zoologischen Gärten

Die grundsätzliche Frage nach dem Sinn der Haltung von Gürteltieren lässt sich unter anderem mit folgenden Argumenten beantworten:

5.2 Arten

weit verbreiteten Arten die Wildpopulationen der gefährdeten Arten am wenigsten zu beeinflussen und dennoch dem Besucher die einzigen lebenden gepanzerten Säugetiere näherzubringen. Unter dem Aspekt der Erhaltungszucht wäre es jedoch wichtig, auch seltenere Arten zu halten.

² Schweizer Tierschutzverordnung (1998): Art. 40

Bei *P. maximus* ist die Durchführung eines Erhaltungszuchtprogramms insofern schwierig, als dass noch nie ein Reproduktionserfolg in Menschenobhut verzeichnet werden konnte und sehr wenig Literatur zu seiner Biologie vorhanden ist. Einem Zuchtprogramm müssten deshalb Feldforschungen vorangehen, welche Daten zur Ökologie dieser wenig bekannten Art liefern. Ein Artenschutz im Zoo mit eventuell späterer Wiederansiedlung der Tierart in ihrem natürlichen Habitat ist aber nur sinnvoll, wenn er mit Naturschutz- und Edukationsprogrammen im Verbreitungsgebiet der Tierart kombiniert wird.

Während *Tolypeutes matacus* häufig in Zoos gehalten wird, gehört *T. tricinctus* zu den selteneren in Menschenobut anzutreffenden Spezies. Santos (1994) hat zum Studium dieser fast unbekannten Art fünf Tiere auf einem lokalen Markt in Brasilien erstanden. Nach 20 Wochen lebten noch zwei Weibchen, womit die Hoffnungen auf eine Reproduktion in Menschenobhut zerschlagen wurden. Da die beiden *Tolypeutes*-Arten ähnliche ökologische und morphologische Merkmale aufweisen, könnte *T. matacus* als Modell für das

5.3 Haltung

5.3.1 Gehegegrösse und -einrichtung

Gürteltiere scheinen mancherorts eher als “Platzfüller” gehalten, d.h. in irgendeinem leerstehenden statt in einem artgerechten, speziell geplanten Gehege untergebracht zu werden. Im Abschnitt der Tierschutzverordnung zu den Mindestanforderungen für das Halten von Wildtieren⁴ ist festgelegt, dass für zwei Gürteltiere ein Innengehege von mindestens 4m² vorhanden sein muss. Für jedes weitere Exemplar ist 1m² Grundfläche dazu zuzugeben. Im Entwurf für die Revision des Anhangs 2 wird als Mindestmass eines Geheges

³ Schweizer Tierschutzgesetz (1995): Art. 2¹
⁴ Schweizer Tierschutzverordnung (1998): Anhang 2

Die von der American Zoo and Aquarium Association pro Tier empfohlene Fläche beträgt 0.7m² pro kg Körpergewicht (Flint, 1997). Auch nach diesen Kriterien sind 40% der Einzelhaltungen und 9% der Gruppenhaltungen zu klein bemessen (Berechnung aufgrund der von den Zoos angegebenen Gewichte).

Eine andere Empfehlung der American Zoo and Aquarium Association gibt an, es könnten drei Männchen und drei Weibchen von *Tolypeutes matacus* in einem Gehege von 1.4m² gehalten werden (Flint, 1997). Es ist fragwürdig, wie sich sechs Kugelgürteltiere, welche in der Wildnis Einzelgänger sind, in solch engen Verhältnissen wohlfühlen und ihr natürliches Verhalten ausleben sollen. Bei einer Gehegefläche von 0.23m² pro Tier ist es unmöglich, dass sich unterlegene Tiere aus dem Territorium des dominanten zurückziehen können.

Gemäß dem Schweizer Tierschutzgesetz darf niemand einem Tier ungerechtfertigt Schmerzen, Leiden oder Schäden zufügen oder es in Angst versetzen. Leiden ist eine seelische Missbehagensempfindung und kann als

5 Schweizer Tierschutzverordnung (1998): Art. 1
6 Schweizer Tierschutzgesetz (1995): Art. 2

Es stellt sich die Frage, ob die häufig bei Sektionen diagnostizierten Pneumonien, Nephritiden oder Septikämien (siehe Tabelle 33) durch eine regelmässigere Kontrolle der Tiere früher erkannt werden könnten und dank einer adäquaten Therapie zu weniger Todesfällen führen würden.

5.3.2 Präsentation

7 Schweizer Tierschutzverordnung (1998): Art. 3²; Art. 5²; Art. 5³
nähergebracht werden, d.h. die Tiere müssen entweder zu einer gewissen Aktivität während der Öffnungszeiten animiert werden oder es muss zumindest die Chance bestehen, sie an ihrem Schlafplatz zu beobachten. Bei Gürteltieren bestehen unter anderem folgende Möglichkeiten:

Auswahl der Art: Die meisten Arten wie *Dasypus spp.*, *Ch. villosum*, *Z. pichiy* oder *E. sexcinctus* sind in ihrem natürlichen Habitat je nach Jagdruck und Aussentemperatur auch tagsüber aktiv. Die Haltung der betreffenden Arten in einer ruhigen Umgebung und bei kontrollierter Temperatur kombiniert mit Massnahmen zu deren Beschäftigung erhöht die Chance, diese während der Öffnungszeiten des Zoos beobachten zu können.

Kombination von mehreren Arten mit verschiedenen Aktivitätszeiten: Die Haltung von mehreren Gürteltier-Arten würde einerseits dem Interessierten aufzeigen, dass Gürteltier nicht gleich Gürteltier ist, d.h. dass beträchtliche Unterschiede in Form, Größe und Verhalten bestehen. Andererseits würde eine größere Chance bestehen, dass während verschiedener Tageszeiten mindestens eine Gürteltier-Art aktiv und somit für den Besucher zu sehen ist.

Fütterung während des Tages: Die meisten Arten können an eine gewisse Aktivität während der Öffnungszeiten des Zoos gewöhnt werden, indem die Fütterungszeiten auf die Tagesstunden gelegt werden. Die Forderung des Schweizer Tierschutzes (1998), die Fütterung solle dann erfolgen, wenn ein Tier seinem arteigenen Rhythmus entsprechend aktiv sei, und nicht als Besucherattraktion auf einen unnatürlichen Zeitpunkt verlegt werden, wird mit dieser Massnahme nicht verletzt. Wie eigene Beobachtungen ergaben, kann dieselbe Art abhängig von verschiedenen äußeren Faktoren in freier Wildbahn tag-, licht-, dämmerungs- oder nachtaktiv sein.

Behavioral enrichment: Aufgrund ihrer Wichtigkeit werden diese Massnahmen in einem eigenen Kapitel ab Seite 198 besprochen.

Gehegeplanung: Gürteltiere legen sich gerne an die Sonne, um sich aufzuwärmen. Ihr Gehege wird deshalb am besten so ausgerichtet, dass Sonnenstrahlen durch Fenster oder Oberlichter einfällt können.

Infrarotlampe: Die Einrichtung einer Infrarotlampe, unter der sich die Gürteltiere wärmen können, bietet eine Alternative zur natürlichen Sonneneinstrahlung. Eine Möglichkeit wäre es, diese über einer Nistbox zu
installieren, welche von oben oder von der Seite für Besucher einsehbar ist. Im Zoo Zürich wurde im Gehege der *Chaetophractus vellerosus* eine Infrarotlampe installiert, unter der sich die Tiere gerne aufhielten. Sie entwickelten sogar eine spezielle Fertigkeit, um die Temperatur in ihrem Gehege optimal zu gestalten: Sie häuf ten die Einstreu auf und legten sich auf den gebildeten Hügel, um näher bei der Wärmequelle zu liegen. Schien nun die Sonne ins Gehege und erwärmte dieses, so schar rten sie einen Teil des Rindenkomposts weg, um die Distanz zwischen ihrem Schlafplatz und der künstlichen Heizquelle zu vergrössern. Sobald die Sonne von einer Wolke verdeckt wurde, wachten die Tiere auf und häuf ten wieder mehr Einstreu auf.

Hohler Stamm: Ein hohler Stamm, der auf einer Seite durch die zum Besucherraum grenzende Scheibe verschlossen wird, bietet den Tieren eine Rückzugsmöglichkeit und den Besuchern die Chance, die Tiere in einem ihrer Schlafplätze zu beobachten.

5.3.3 Management
Eine hands on Haltung darf in keinem Fall ein Ersatz für fehlende Ressourcen sein. Als Beispiel kann angeführt werden, dass nicht ein regelmässiges Schneiden die Krallen kurz halten soll, sondern Abnutzungsmöglichkeiten geboten werden müssen.

5.4 **Fütterung**

Der Metabolismus und die Futteraufnahme von Gürteltieren reduzieren sich im Winter (S.McPhee, pers. Mitt.). Im Gegensatz zu ihren wildlebenden Artgenossen besteht bei Gürteltieren in Menschenobhut jedoch weder ein
saisonaler Unterschied in der Futtermenge noch in deren Zusammensetzung. Noch bedenklicher ist, dass allen Arten ähnliche Diäten verabreicht werden, ungeachtet dessen, ob sie in der Wildnis überwiegende Insektenfresser, Carnivoren - Omnivoren oder opportunistische Insektenfresser sind (siehe Tabelle 23).

Der Hauptunterschied zwischen der Ernährung von Labor- und in Zoos gehaltenen Gürteltieren besteht darin, dass im Zoo häufiger Früchte und Gemüse beigegeben werden, während im Labor auf eine möglichst unkomplizierte, wenig zeitaufwendige Fütterung geachtet wird. Dem Futter als Beschäftigungsfaktor wird in Zoologischen Gärten deutlich mehr Wert beigemessen. In der Labortierfütterung kommen Insekten gar nicht vor, während sie bei 57% der Zoos regelmässiger Bestandteil der Diät sind.

\(^8\) Schweizer Tierschutzverordnung (1998): Art.2\(^2\)
Bei der Fütterung von Wildtieren ist vor allem zu beachten (Schweizer Tierschutz, 1998):

- **Futterqualität**: Der Nährstoffbedarf von Gürteltieren ist zuwenig erforscht, um allgemeingültige, wissenschaftlich fundierte Fütterungsvorschläge angeben zu können. Die natürliche Nahrung weist niedrige Protein- und Fettgehalte (Coppo et al., 1979) und hohe Asche- und Rohfasergehalte auf (Ramsey et al., 1981). Wie die Häufigkeit von obesen Tieren, Nierenversagen oder Erkrankungen des Verdauungstrakts zeigt, wird diesem Umstand bei der Zusammenstellung der Ersatznahrung in Menschenobhut viel zuwenig Rechnung getragen.

5.5 Reproduktion

Analysiert man die spärlichen Berichte über die erfolgreiche Zucht von *D. novemcinctus* in Menschenobhut, so fällt auf, dass die meisten Würfe bei Tieren in Aussengehegen verzeichnet wurden. Den Gürteltieren standen mehr Platz und ein natürlicher Untergrund zur Verfügung, in welchem sie ihren Bau graben und nach Futter suchen konnten, und sie waren dem natürlichen Tag- und Nacht-Zyklus und jahreszeitlichen Witterungsunterschieden ausgesetzt (Job et al., 1984; Truman und Sanchez, 1993; Carvalho et al., 1997). Welche dieser Faktoren nun entscheidend sind für eine erfolgreiche Zucht, ist noch nicht bekannt.

5.6 Pathologien

Dass 50 von 60 Zoos, d.h. 83% eine Quarantäne durchführen (siehe Tabelle 28), ist als positiv zu werten, auch wenn diese eigentlich in allen Haltungen die Regel sein sollte. Ihre Dauer variiert hingegen beträchtlich (siehe Tabelle 29). Der Sinn einer siebentägigen Quarantäne ist fraglich. Latente Infektionen werden eher nach dem Ende dieser kurzen Quarantäne zum Ausbruch kommen. Die längste registrierte Quarantäne dauert 90 Tage. Wie der betreffende Zoo mitteilte, wird sie nur bei Wildfängen angewendet; bei Exemplaren, welche von anderen Haltungen übernommen werden, beträgt sie 30 Tage. Eine 90-tägige Quarantäne bringt keine namhaften Vorteile gegenüber einer einmonatigen. Als einzige bedeutende Erkrankung mit längerer Inkubationszeit käme Lepra in Frage. Da aber bis zu zwei Jahre vergehen können, bis Infektionen mit *Mycobacterium leprae* ausbrechen, ist die Chance äußerst gering, dass die Symptome gerade während der dreimonatigen Quarantäne in Erscheinung treten.

Nur 45% der Zoos entwurmen ihre Gürteltiere regelmäßig (siehe Tabelle 30). Einige davon haben in der Umfrage angegeben, die Entwurmung nur nach einer positiven koproparasitologischen Untersuchung durchzuführen. Von den anderen ist nicht bekannt, ob routinemäßig Antiparasitika ohne vorherige parasitologische Untersuchung verabreicht werden, oder ob auch bei ihnen eine Kotanalyse die Regel ist. Dass 55% nur “wenn nötig” entwurmen, d.h. wenn Parasiten bereits klinische Symptome ausgelöst haben, ist
erschreckend, sollte doch zur Sicherstellung der Gesundheit der Tiere eine regelmässige koprologische Untersuchung durchgeführt und nötigenfalls ein Antiparasitikum appliziert werden.

Die Ergebnisse der Fragebogen-Auswertung betreffend der Häufigkeit einzelner Pathologien (Tabelle 33) entsprechen den in der Literatur beschriebenen Resultaten (z.B. Baskerville und Francis, 1981; Resoagli et al., 1985; Resoagli et al., 1986; Diniz et al., 1997).

9 Schweizer Tierschutzverordnung (1998): Art. 3¹

5.7 Ethologie

5.7.1 Verhaltensstörungen

Wegen der geringen Datenmenge kann keine Aussage über die genauen Ursachen der Verhaltensstörungen gemacht werden. Das Problem der Stereotypie-Entstehung ist komplex und kann wohl kaum auf einen einzigen Faktor zurückgeführt werden.

Als Ursachen einer Überforderung der Anpassungsfähigkeit und Auslösung von Fehlverhalten kommen in Frage:

Einengen der Bewegungsfreiheit: Das kleinste in der Umfrage registrierte Gehege ist 0.4m² gross (siehe Tabelle 16). In der Wildnis legt ein *Chaetophractus vellerosus* auf Futtersuche aber bis zu 1km zurück. Auch wenn von anderen Tierarten bekannt ist, dass sich ihr Bewegungsdrang in Menschenobhut wegen der leicht verfügbaren Nahrung verringert, muss eine minimale Bewegungsmöglichkeit geboten werden.

\[^{10}\text{Swizer Tierschutzverordnung (1998), Art. 1}\]
Fehlen von Reizen wegen immer gleicher Umgebung: Nur in 21% der Haltungen wird Wert auf Abwechslung gelegt und z.B. die Gehegeeinrichtung regelmässig verändert (siehe Tabelle 19).

Mangelhaftes Klima: Gürteltiere haben ein reduziertes Thermoregulationsvermögen und sind sehr empfindlich auf Temperaturschwankungen. Es ist vorstellbar, dass sie auf suboptimale Klimabedingungen mit einer Verhaltensänderung wie Hyperaktivität oder Apathie reagieren.

Reizüberflutung: In den untersuchten Haltungen stand allen Gürteltieren eine Rückzugsmöglichkeit zur Verfügung. Stress kann jedoch leicht ausgelöst werden, wenn diese nicht vorhanden und die Tiere den ganzen Tag den Blicken der Besucher ausgesetzt sind.
5.7.2 Behavioral enrichment

Da der Bewegungsradius, die Futtersuche und das Reizangebot von Gürteltieren in Menschenobhut im Vergleich zu ihrem natürlichen Habitat deutlich eingeschränkt sind, müssen Alternativen zu ihrer Beschäftigung angeboten werden. Um einer Unterforderung der Gürteltiere zuvorzukommen, können die unterschiedlichsten Massnahmen ergriffen werden:

Edukationsprogramme: Verschiedene Zoos in den USA bieten Edukationsprogramme an, in welchen den Kindern bestimmte Tierarten nähergebracht werden, indem sie diese berühren können und dabei Informationen über deren Biologie erhalten. Gürteltiere sind neugierige und zutrauliche Tiere, welche sich gerne kraulen lassen (S.McPhee, pers. Mitt.). Die Teilnahme an einem solchen Programm kann deshalb für ein Gürteltier als Abwechslung betrachtet werden. Diese Massnahme ist aber nur zu akzeptieren, wenn das Tier an menschlichen Kontakt gewöhnt ist, d.h. beispielsweise bei Individuen, welche von Hand aufgezogen oder zuvor als Heimtiere gehalten wurden.

Tägliche Gabe von Heu oder Stroh: Die meisten Arten benutzen Heu oder Stroh zum Nestbau. Verbringt man solches Nistmaterial in ihr Gehege, beschäftigen sich die Tiere etwa eine Stunde lang mit dem Zusammentragen des Heus oder Strohs und dem Auskleiden ihrer Höhlen.

Mehlwürmer im Gehege vergraben: *D.novemcinctus* schläft bis zu 15 Stunden pro Tag. Die übrige Zeit ist es hingegen sehr aktiv und überwiegend auf Futtersuche. Das Vergraben von Mehlwürmern oder anderen Insekten fördert das natürliche Verhalten der Futtersuche und beschäftigt die Tiere. Eine andere Möglichkeit wäre das Anbieten von verrotteten Baumstämmen oder – wo erhältlich – Ameisenhaufen, welche sie mit ihren kräftigen Krallen aufreissen können.

Sonne: Es wird immer wieder beobachtet, dass sich Gürteltiere gerne an der Sonne wärmen. Das Gehege sollte deshalb so angelegt sein, dass diese durch Oberlichter oder Scheiben einstrahlt. Am besten wäre der Zugang zu einem Aussengehege.
Zugang zu einem Aussenengehege: Neben der Sonneneinstrahlung können die Tiere in Aussenanlagen diverse olfaktorische, visuelle, akustische Reize erleben, welchen sie in Innengehegen nicht ausgesetzt sind.

Kontakt zu Menschen: Dieser scheint von Vorteil zu sein, um Stress vorzubeugen, und bringt Abwechslung in den Alltag eines Gürteltiers in Menschenobhut (S.McPhee, pers. Mitt.).

Haltung in Mischgehegen: Wie bereits im Kapitel “Gehegegrösse und -einrichtung“ auf Seite 179 erwähnt, erfordert ein Gemeinschaftsgehege eine höhere Aufmerksamkeit seiner Bewohner und ist durch geruchliche Reize interessanter für die verschiedenen Arten.

5.8 Schlussfolgerungen

Die Analyse der in Zoologischen Gärten durchgeführten Umfrage und die Durchsicht der Literatur zeigt deutlich, dass derzeit grosse Defizite in der Haltung von Gürteltieren bestehen, welche größtenteils auf mangelndem Wissen über diese Tiere beruhen. Dieses ist darauf zurückzuführen, dass wenig wissenschaftliche Literatur über die Biologie und Haltung der *Dasypodidae* vorliegt und viele Publikationen schwer zugänglich sind.

6 Zusammenfassung

Die vorliegende Arbeit beurteilt die derzeitige Praxis der Haltung von Gürteltieren in Menschenobhut.

Auf die Einführung folgen die Resultate einer Umfrage, mit welcher die aktuellen Haltungsbedingungen von Gürteltieren in Menschenobhut erfasst wurden. Mittels eines Fragebogens wurden Auskünfte eingeholt über die gehaltenen Arten, Gehegegrössen, Fütterung, Reproduktion, Ethologie und die aufgetretenen Erkrankungen und Todesursachen. Die Analyse der Umfrage zeigt, dass grosse Defizite in der Haltung von Gürteltieren bestehen, welche sich negativ auf die Reproduktionsleistung und die Gesundheit der Tiere auswirken oder Fehlverhalten auslösen können. Aufgrund der geringen Datenmenge ist jedoch keine gesicherte Aussage darüber möglich, welche Faktoren für die Auslösung der Stereotypien bzw. für die mangelnden Zuchterfolge verantwortlich sind.

In der Diskussion wird versucht, die Ursache der in der Hälfte der Haltungen festgestellten Fehlverhalten zu erörtern. Vorschläge zum behavioral enrichment, zur Verbesserung der Haltung und Fütterung und Ideen zur Präsentation sollen einen Beitrag zur Steigerung der Publikumsattraktivität von Gürteltieren in Zoologischen Gärten leisten.

Ein Vergleich der heute üblichen Haltungsformen mit den Auflagen der Schweizer Gesetzgebung und den Richtlinien des Schweizer Tierschutzes

7 Summary

This thesis analyses the current conditions of armadillos in captivity. The introduction is based on literature, conversations with scientists and personal observations. It informs about evolution, taxonomy and biology of the 21 known species of armadillos and the different aspects of the care and maintenance in captivity and contains information about the adequate enclosure size and its equipment, the nutrition and reproduction of captive armadillos. Comments on their handling and on suitable blood sampling techniques, hematological parameters and a compilation of the most common diseases and their therapies should help the zoo veterinarian when taking care of armadillos.

This first part is followed by the results of a survey made in zoological gardens that keep armadillos. The zoos were asked for information about maintenance, nutrition, reproduction, ethology as well as the diagnosed pathologies and causes of death of their armadillos. The analysis of this survey demonstrates that there are serious deficits in the care and maintenance of armadillos, which have a negative influence on their reproduction and health and cause stereotypes. Because of the poor data we can’t put a finger to the factors responsible for the stereotypes and the lack of reproductive success.

The possible reasons for the appearance of stereotypes in 50% of the zoos are discussed. A few recommendations for the behavioral enrichment, the improvement of the maintenance and nutrition and ideas for their presentation to the visitor are meant to increase the attractiveness of armadillo exhibits.

A comparison of the usual conditions in which armadillos are kept with the Swiss legislation and the guidelines of the Swiss Society of Animals’ Protection shows clearly that it is not justifiable to keep armadillos under the current conditions. The animals are held in too small exhibits with poor distraction, fed inappropriately and suffer from pathologies related to their maintenance in captivity. Only a few zoos have breeding programs, and those are rarely successful.
The maintenance of armadillos can only be acceptable if efforts are made to improve their living conditions and to elaborate diets according to the need of each species. To reach this goal it is recommended to intensify the field studies and the investigation on captive armadillos.
Fragebogen zur Haltung von Gürteltieren

Adresse
Name des Zoos: ...
Ihr Name: ...

Allgemeines
Welche Gürteltierarten werden bei Ihnen gehalten?

<table>
<thead>
<tr>
<th>Gesamtzahl</th>
<th>Gruppenzusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich / weiblich</td>
<td>m / w</td>
</tr>
<tr>
<td>Cabassous unicinctus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Chaetophractus villosus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Chaetophractus nationi</td>
<td>..../.....</td>
</tr>
<tr>
<td>Chaetophractus vellerosus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Chlamyphorus truncatus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Dasypus septemcinctus / hybridus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Euphractus sexcinctus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Priodontes maximus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Tolypeutes matacus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Tolypeutes tricinctus</td>
<td>..../.....</td>
</tr>
<tr>
<td>Zaedyus pichiy</td>
<td>..../.....</td>
</tr>
<tr>
<td>andere: ..</td>
<td>..../.....</td>
</tr>
</tbody>
</table>
Haltung

Wie gross ist die Grundfläche des Geheges? x cm

Woraus bestehen der Untergrund und die Einstreu des Geheges?

(bitte Zutreffendes ankreuzen)

- Beton
- Erde
- Heu
- Holzschnitzel
- Maiskolbenhäcksel
- Papierschnitzel
- Rindenkompost
- Sand
- Stroh
- Torfmull
- anderes:

Sind spezielle Einrichtungen vorhanden?

(bitte Zutreffendes ankreuzen)

- Boxe
- Holzblöcke
- Steine
- Bademöglichkeit
- Wärmelampe
- andere Rückzugsmöglichkeit:

- andere Beschäftigungsmöglichkeit:

Wie oft wird das Gehege gereinigt?

- täglich
- zweimal pro Woche
- wöchentlich
- zweimal pro Monat
- monatlich
- anderes:

Fütterung

Wie oft werden die Gürteltiere gefüttert?

- zweimal pro Tag
- täglich
-Mal pro Woche

Wieviele Futter wird pro Tier und Mahlzeit berechnet?g

Wäre es möglich, eine Kopie des in Ihrem Zoo verwendeten Futterrezepts zu erhalten?

Haben Sie den Eindruck, Ihre Gürteltiere seien zu dick?

- zu mager?
- gut genährt?

Welches ist das Durchschnittsgewicht Ihrer Gürteltiere?kg

Zucht

Haben Sie ein Zuchtprogramm für Ihre Gürteltiere? ja nein

Wenn ja: Wie gross sind Ihre Zuchtgruppen?m /w
Wie alt sind die Zuchttiere? ...

Wie viele Geburten konnten Sie 1998 verzeichnen?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>> 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anzahl Lebendgeborener:/....../....../....../......

Anzahl Totgeborener:

Wie wird die Trächtigkeit überprüft?

- gar nicht
- abdominale Palpation
- rektale Palpation
- Röntgen
- Ultraschall
- Gewichtsveränderung
- Hormontest
- anderes:

Pathologien

Wie lange dauert die Quarantäne für Gürteltiere?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>es gibt keine</td>
<td>........ Tage</td>
</tr>
</tbody>
</table>

Werden die Tiere regelmässig entwurmt?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
<td>nein</td>
</tr>
</tbody>
</table>

Wie oft untersuchen Sie die Tiere?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nur, wenn sie krank erscheinen</td>
<td>monatlich</td>
</tr>
<tr>
<td></td>
<td>halbjährlich</td>
</tr>
<tr>
<td></td>
<td>jährlich</td>
</tr>
<tr>
<td></td>
<td>anderes:</td>
</tr>
</tbody>
</table>
Welche Krankheiten sind aufgetreten? Wie wurden sie behandelt, und mit welchem Erfolg?
Wäre es möglich, eine Kopie der Kranken- und / oder Sektionsberichte zu erhalten?

Verhalten
Ist Ihnen eine oder mehrere der folgenden Verhaltensänderungen aufgefallen?
übermässiges Graben
Automutilationen
Kannibalismus
Kreislaufen
andere Stereotypien:

Andere Beobachtungen

Herzlichen Dank!
9 Literaturverzeichnis

Estudio de cuevas de Chaetophractus villosus (Mammalia, Dasypodidae) en el noreste de Buenos Aires, Argentina.
XIV Jornadas Argentinas de Mastozoología, Salta, 44.

Acha, P.N. und P.N. Szyfres (1988):
Leprosy.
In: Zoonoses and communicable diseases common to man and animals (Acha, P.N. und B. Szyfres, eds.) Pan American Health Organization Scientific Publication No. 503 (zitiert in Truman, 1991)

Neocortical and olfactory bulb activity, in armadillos submitted to covering with soil.
Arch. Int. Physiol. Biochim. 94(4), 271-279.

Absence of apnea in armadillos covered by soil.
Respir. Physiol. 67(2), 239-245.

Zur Aktivität beim Zwerggürteltier, Euphractus pichiy, im Tierpark Berlin.

Los armadillos.
In: Los mamíferos de Chiapas. 2. edit. (Alvarez del Toro, M., ed.) Talleres Gráficos del Estado de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico, 45-49.

Wild Mexican armadillo with leprosy-like infection (letter).
Int. J. Lepr. 52(2), 254-255.

Tissue transplantation in the nine-banded armadillo, Dasypus novemcinctus.

The armadillo in experimental biology.

Araujo, T.L. (1940):
Redescrição e novos hospedeiros de Schneidernema retusa, Rud.
Isolation of Histoplasma capsulatum from an armadillo (Dasypus novemcinctus) in the eastern Amazon of Brazil.

Azzali, G. und L.J.A. DiDio (1965):
The lymphatic system of Dasypus novemcinctus and Dasypus sexcinctus.
J. Morph. 117(1), 49-72.

Bagagli, E., A. Sano, et al. (1998):
Isolation of Paracoccidioides brasiliensis from armadillos (Dasypus novemcinctus [novemcinctus]) captured in an endemic area of paracoccidioidomycosis.

Baker, C.F. (1905):
The classification of the American Siphonaptera.

Baliña, L.M., A. Cuba Caparó, et al. (1975):
Inoculación del Mycobacterium leprae a tres especies de armadillos autóctonos de la Argentina.
Leprologia 18, 11-14.

Barlow, J.C. (1965):
Land mammals from Uruguay: ecology and zoogeography.
PhD thesis, University of Kansas, Lawrence. (zitiert in Redford, 1986)

Barnett, C.H., R.J. Harrison, et al. (1958):
Variations in the venous systems of mammals.
Biol. Rev. 33, 442-487.

The lesions and prevalence of Trypanosoma cruzi in opossums and armadillos from southern Louisiana.
J. Parasitol. 77(4), 624-627.

Colombian armadillos: Stomach contents and infection with Trypanosoma cruzi.
J. Mammal. 66(1), 188-193.

Trypanosomes of the subgenus Megatrypanum from armadillos (Xenarthra: Dasypodidae).
Barretto, M.P. und R.D. Ribeiro (1979):
Reservatórios silvestres do Trypanosoma (Schizotrypanum) cruzi Chagas, 1909.

Baskerville, A. und L. Francis (1981):
Mange in newly-imported armadillos (Dasypus novemcinctus).

The chromosomes of the nine-banded armadillo, Dasypus novemcinctus.
Chromosoma (Berl.) 13(1), 27-38.

Beck, U. (1972):
Ueber die künstliche Aufzucht von Borstengürteltieren (Euphractus villosus).

Benirschke, K., R.J. Low, et al. (1969):
Cytogenetic studies of some armadillos.
In: Comparative mammalian cytogenetics (Benirschke, K., ed.) Springer Verlag, Heidelberg, New York, 330-345.

Benirschke, K., M.M. Sullivan, et al. (1964):
Size and number of umbilical vessels. A study of multiple pregnancy in man and the armadillo.
Obstet. Gynecol. 24(6), 819-834.

The chromosomes of the giant armadillo, Priodontes giganteus Geoffroy.

Bertelsmann (n.d.):
Gürteltiere.
In: Bertelsmann Tierlexikon (Bertelsmann, ed.)

Bertonatti, C. und G. Aprile (1999):
Pichiciego menor.
Vida silvestre(1/1999), 21-22.

Bertoni, M.A. und E.B. Casanave (1999):
Estudio experimental de los niveles de glucemia en Chaetophractus villosus (Mammalia, Dasypodidae), adaptado a cautiverio.
XIV Jornadas Argentinas de Mastozoología, Salta, 14.

Billingham, R.E. und W.B. Neaves (1980):
Exchange of skin grafts among monozygotic quadruplets in armadillos.
Block, J.A. (1974):
Hand-rearing seven-banded armadillos at the National Zoological Park, Washington.
Int. Zoo Yb. 14, 210-214.

Food habits of the three-banded armadillo (Xenarthra: Dasypodidae) in the dry Chaco, Argentina.
J. Mammal. 76(4), 1199-1204.

Es porotricosis cutânea, linfangítico-nodular, con puerta de entrada múltiple.
Medicina Cutanea Ibero Latino Americana 16(3), 263-265.

Interrelações entre acari Ixodidae e hospedeiros Edentata da Serra da Canastra, Minas Gerais, Brasil.
Mem. Inst. Oswaldo Cruz 84(1), 61-64.

Food habits and home range of the common long-nosed armadillo Dasypus novemcinctus in Alabama.

Armadillos, sloths, anteaters and pangolins: orders Edentata and Pholidota.

Bruno, N. (1999):
Hábitos alimenticios de cinco dasipódidos en el Chaco Boliviano.
IV Congreso Internacional sobre manejo de fauna silvestre en Amazonia y Latinoamérica, Asunción, 62.

Buchanan, G.D. (1957):
Variation in litter size of nine-banded armadillos.
J. Mammal. 38, 529.

Bugge, J. (1979):
Cephalic arterial pattern in New World edentates and Old World pangolins with special reference to their phylogenetic relationships and taxonomy.

Bundesamt für Veterinärwesen (1998):
Regelung der Wildtierhaltung in der Schweiz: Information.
Bundesamt für Veterinärwesen, Bern, 15 Seiten
Improved caging for nine-banded armadillos.

Body temperature and electrocardiographic data for the nine-banded armadillo (Dasypus novemcinctus).
J. Mammal. 52(2), 472-473.

Cabrera, A. (1957):
Catálogo de los mamíferos de América del Sur.

Observations on the habitat and distribution of the Brazilian three-banded armadillo Tolypeutes tricinctus, a threatened Caatinga endemic.
Mammalia 57(1), 149-152.

Cardoso, F.M., H.P. Godinho, et al. (1985):
Variação sazonal da atividade secretória das glândulas genitais acessórias masculinas de tatus Dasypus novemcinctus Linnaeus, 1758.

Carillo, C.G., D.M. Meyers, et al. (1972):
Bataviae group Leptospirae isolated from armadillos in Argentina.

Carini, A. (1933):
Sur deux nouvelles Eimeria rencontrées dans l'intestin d'un jeune tatou.

Carini, A.A. und S.F. Vizcaíno (1987):
A new record of the armadillo Chaetophractus vellerosus in the Buenos Aires Province of Argentine: possible causes for the disjunct distribution.
Studies on Neotropical Fauna and Environment 22(1), 53-56.

Carmanchahi, P.D., C.C. Ferrari, et al. (1997):
Breeding in captivity of the southern lesser long-nosed armadillo (Dasypus hybridus).
Zoocriaderos 2(3), 1-5.

Carrillo, E.J. und G.R. Wong (1992):
Registro y medidas de restos de un Cabassous centralis (Edentata: Dasypodidae) en el Parque Nacional Manuel Antonio, Quepos, Costa Rica.
Brenesia 38, 153-154.
The burrows of Giant Armadillos, Priodontes maximus (Edentata: Dasypodidae).
Säugetierk. Mitt. 31, 47-53.

Characteristics and use of burrows by four species of armadillos in Brazil.
J. Mammal. 64(1), 103-108.

Breeding nine-banded armadillos (Dasypus novemcinctus) in captivity.

Body temperature of the armadillo Chaetophractus villosus (Mammalia, Dasypodidae).

Decrease of body temperature in armadillos experimentally covered by soil.

Bradycardia in armadillos experimentally covered with soil.

Cavalcanti Proença, M. (1937):
Revisão do gênero Aspidodera Railliet and Henry, 1912 (Nematoda: Subuluroidea).

Cetica, P., I.M. Rahn, et al. (1997):
Comparative spermatology in Dasypodidae II (Chaetophractus vellerosus, Zaedyus pichiy, Euphractus sexcinctus, Tolypeutes matacus, Dasypus septemcinctus and Dasypus novemcinctus).
Biocell 21(3), 195-204.

Comparative spermatology in Dasypodidae (Priodontes maximus, Chaetophractus villosus and Dasypus hybridus).
Biocell 18(1), 89-103.

Evolutionary sperm morphology and morphometry in armadillos.

Chandler, A.C. (1946):
Helminths of armadillos in eastern Texas.

Tatu carreta, pichiciego menor, pichiciego mayor.
In: Los que se van. (Chebez, J.C., ed.) Albatros, Argentina, 191-204.

Christensen, C.G. und G.H. Waring (1980):
The `chuck` sound of the nine-banded armadillo.
J. Mammal. 61(4), 737-738.

Civita, R. (1970):
Para salvar a pele, transformos-a em couraça.
Os Bichos 9, 73. (Zitiert in: Carter, 1983)

Clark, W.K. (1951):
Ecological life history of the armadillo in the eastern plateau region.

Gnathostomiasis in a wild-caught nine-banded armadillo (Dasypus novemcinctus).

Codón, S.M. und E.B. Casanave (1996):
Histology of the ovary of the armadillo Chaetophractus villosus (Mammalia, Dasypodidae).

Convit, J. und M.E. Pinardi (1974):
Leprosy: Confirmation in the Armadillo.
Science 184(4142), 1191-1192.

Coppo, J.A., L. Quiroz, et al. (1979):
Valores hemáticos del armadillo Dasypus spp.
Gaceta veterinaria (Buenos Aires) 41(343), 493-501.

A second armadillo (Cabassous centralis) for the faunas of Guatemala and Mexico.
J. Mammal. 70(4), 870-871.

Cuba-Caparó, A. (1976):
Some hematologic and temperature determinations in the 7-banded armadillo (Dasypus hybridus).

Protein sequence analysis applied to Xenarthran and Pholidote phylogeny.
In: The evolution and ecology of armadillos, sloths and vermilinguas.

de Kantor, I.N. (1978):
Isolation of Mycobacteria from two species of armadillos: Dasypus hybridus
("mulita") and Chaetophractus villosus ("peludo").

de Oliveira, T.G. (1995):
The Brazilian three-banded armadillo Tolypeutes tricinctus in Maranhão.
Edentata 2, 18-19.

Comparative studies of the respiratory functions of mammalian blood VII:
Armadillo.
Respir. Physiol. 13(2), 198-208.

Técnicas de manipulación, restricción e inmovilización.

Diesing, K.M. (1861):
Revision der Nematoden.

Clinical disorders in armadillos (Dasypodidae, Edentata) in captivity.

Divers, B.J. (1978):
Edentates.

Durette-Desset, M.-C. (1970):
Nématodes Trichostrongyloidea, parasites d'édentés sud-américains.

Dipetalonema (Dasypafilaria) averyi subgen. et sp. n. (Nematoda: Filarioidea) from the nine-banded armadillo, Dasypus novemcinctus in Louisiana.
J. Parasitol. 68(2), 325-328.
Acanthocheilonema sabanicolae n. sp. (Filarioidea: Onchocercidae) from the savanna armadillo (Dasypus sabanicola) in Venezuela, with comments on the genus Acanthocheilonema.
J. Parasitol. 72(2), 245-248.

Strianema venezuelensis gen. et sp. n. (Filarioidea: Onchocercidae) from Venezuelan armadillos (Dasypus spp.).

Ecominas On-Line (1999):
Espécies ameaçadas de Extinção em Minas Gerais.

The fossil Giant Armadillos of North America (Pampatheriinae, Xenarthra = Edentata).

Eisenberg, J.F. (1961):
Observations on nest building behavior of armadillos.

Eisentraut, M. (1952):
Vom Kugel-Gürteltier (Tolypeutes conurus).
Natur und Volk, Frankfurt am Main 82(1), 43-48.

Elliott, D.G. (1904):
Dasypodidae. Armadillos.
In: The land and sea mammals of middle america and the west indies., Vol. 4., Chicago, 31-34.

Encke, W. (1965):
Aufzucht von Borstengürteltieren, Chaetophractus villosus.

Enders, A.C. (1962):
The structure of the armadillo blastocyst.

Enders, A.C. (1966):
The reproductive cycle of the nine-banded armadillo (Dasypus novemcinctus).
Enders, A.C. und G.D. Buchanan (1959):
The reproductive tract of the female nine-banded armadillo.

Structural interactions of trophoblast and uterus during hemochorial placenta formation.
J. Exp. Zool. 266(6), 578-587.

The phylogeny of the Xenarthra.
In: The evolution and ecology of armadillos, sloths and vermilinguas.

Número y ubicación de las glándulas pelvianas de los dasipodidos en relación al sexo (Mammalia, Xenarthra).
X Jornadas Argentinas de Mastozoología, La Plata, 22.

Morfología de las glándulas pelvianas de Euphractus sexcinctus (Linné, 1758) (Mammalia, Dasypodidae).

Hace sólo diez mil años.
Colección Prometeo. Editorial Fin de Siglo, Montevideo, 128 Seiten

Allometry of the bones of living and extinct armadillos (Xenarthra, Dasypodida).

El cachicamo sabanero.
Fondo Editorial, Caracas. (zitiert in Redford, 1986)

Fernandez, J.J. (1997):
Libro Rojo de los Mamíferos y Aves amenazadas de la Argentina.
Ed. Fucema, Buenos Aires

Fitch, H.S., P. Goodrum, et al. (1952):
The armadillo in the southeastern United States.
Xenarthra.

Leprosy in wild armadillos (Dasypus novemcinctus) on the Texas Gulf Coast: anatomic pathology.
J. Reticuloendothel. Soc. 34(5), 341-357.

Livro vermelho dos mamíferos brasileiros ameaçados de extinção.
Fundação Biodiversitas, Belo Horizonte. (Zitiert in Gomes de Oliveira, 1995)

Fournier-Chambrillon, C., I. Vogel, et al. (2000):
Immobilization of free-ranging nine-banded armadillo and great long-nosed armadillos with three anesthetic combinations.
J. Wildl. Dis. 36(1), 131-140.

J. Parasitol. 81(6), 936-941.

Animal reservoirs for Trypanosoma cruzi Infection in an endemic area in Paraguay.

Galbreath, G.J. (1982):
Armadillo - Dasypus novemcinctus.

Galbreath, G.J. (1985):
The evolution of monogygotic polyembryony in Dasypus.

Estructura esplénica de Chaetophractus villosus: adulto y neonato.

Gaudin, T.J. und A.A. Biewener (1992):
The functional morphology of xenarthrous vertebrae in the armadillo Dasypus novemcinctus (Mammalia, Xenarthra).
J. Morph. 214(1), 63-81.
The lymphatic system of the anterior limb in Dasypus novemcinctus novemcinctus Linne, 1758 (Mammalia: Edentata).
Brazilian journal of veterinary research and animal science 27(2), 145-151.

Gezuele, E. (1972):
Fatal infection by Nocardia brasiliensis in an armadillo.
Sabouraudia 10(1), 63-65.

Edentata: Diseases.

Glass, B.P. (1985):
History of classification and nomenclature in Xenarthra (Edentata)
In: The evolution and ecology of armadillos, sloths and vermilinguas

Accessory sex structures in the male nine-banded armadillo (Dasypus novemcinctus).
J. Anat. 97, 474-475.

Godfrey, D.G. (1979):
The zymodemes of trypanosomes.

Refugios epigeos del "tatu" Dasypus novemcinctus linne (Mammalia: Dasypodidae).

Paecilomyces lilacinus (Thom) Samson, from systemic infection in an armadillo (Dasypus novemcinctus).
Sabouraudia 22(2), 109-116.

Greegor, D.H., Jr. (1975):
Renal capabilities of an Argentine desert armadillo.
J. Mammal. 56(3), 626-632.

Diet of the little hairy armadillo, Chaetophractus vellerosus, of northwestern Argentina.
J. Mammal. 61(4), 331-334.

Home-range size and social spacing among female common long-nosed armadillos (Dasypus novemcinctus).

A simple technique for sampling blood from fully conscious nine-banded armadillos.

Plasma and erythrocyte cholinesterase values for the common long-nosed armadillo, Dasypus novemcinctus.

Estudio de la secreción láctea de los armadillos Chaetophractus villosus y Chaetophractus vellerosus.
XIV Jornadas Argentinas de Mastozoología, Salta, 65.

Howells, R.E., A.D.V. Carvalho, et al. (1975):
Morphological and histochemical observations on Sarcocystis from the nine-banded armadillo, Dasypus novemcinctus.

Huchon, D., F. Delsuc, et al. (1999):
Armadillos exhibit less genetic polymorphism in North America than in South America: nuclear and mitochondrial data confirm a founder effect in Dasypus novemcinctus (Xenarthra).
Molecular Ecology 10, 1743-1748.

Zoogeography of the nine-banded armadillo (Dasypus novemcinctus) in the United States.
BioScience 24(8), 457-462.

Hyrtil, J. (1854):
Beiträge zur vergleichenden Angiologie. V. Das arterielle Gefäss-System der Edentaten.

IUCN (1999):
IUCN Red List of Threatened Animals.

Jakob, C. und C. Onelli (1913):
Cingulados.
Job, C.K., E.B. Harris, et al. (1986):
Thorns in armadillo ears and noses and their role in the transmission of leprosy.
Arch. Pathol. Lab. Med. 110(11), 1025-1028.

Attempts to breed the nine-banded armadillo (Dasypus novemcinctus) in captivity--a preliminary report.
Int. J. Lepr. 52(3), 362-364.

Johansen, K. (1961):
Temperature regulation in the nine-banded armadillo.
Physiol. Zool. 34(2), 126-144.

Jordan, K. (1934):
On some Siphonaptera from Argentina.

Estudo cromossomico de algumas especies da Ordem Edentata.
Tese de Livre-Docência, Instituto Básico de Biologia Médica e Agrícola, UNESP, Botucatu, S.Paulo. (zitiert in Jorge, 1985)

Jorge, W., D.A. Meritt, Jr., et al. (1977):
Chromosome studies in Edentata.
Cytobios. 18(71-72), 157-172.

The somatic chromosomes of Xenartha.
In: The evolution and ecology of armadillos, sloths and vermilinguas.

Kaplan, W., J.R. Broderson, et al. (1982):
Spontaneous systemic sporotrichosis in nine-banded armadillos (Dasypus novemcinctus).

Int. J. Lepr. 49(3), 345-346.

Keil, A. und B. Venema (1963):
Struktur- und Mikrohärteuntersuchungen an Zähnen von Gürteltieren (Xenartha).
Khalil, M. und E.G. Vogelsang (1932a):
On a new genus of nematodes Mazzia n.g., n.sp. from an Argentine edentate.

Khalil, M. und E.G. Vogelsang (1932b):
On some nematode parasites from South American animals.

Kirchheimer, W.F. (1978):
Medical research using the armadillo at the United States Public Health Service Hospital in Carville, Louisiana.

Kirchheimer, W.F. und R.M. Sanchez (1976):
Significance of nine banded armadillo in biomedical leprosy research.
Lepr. India. 48(4), 419-427.

Intraspecies differences of resistance against leprosy in nine-banded armadillos.
Lepr. India. 53(4), 525-530.

Kordella, L. (1998):
Three banded armadillo dossier.

Krieg, H. (1929):
Biologische Reisestudien in Südameriaka. IX. Gürteltiere.

Das Verhalten der Gürteltiere (Dasypodidae).

Enzootic schistosomiasis in a Louisiana armadillo.

Krumbiegel, I. (1940):
Die Säugetiere der Südamerika-Expeditionen Prof. Dr. Kriegs.

Kühlhorn, F. (1938):
Die Anpassungstypen der Gürteltiere.
Z. Säugetierk. 12, 245-303.

Spatial patterns in a population of nine-banded armadillos (Dasypus novemcinctus).

Loughry, W.J., G.M. Dwyer, et al. (1998a):
Behavioral interactions between juvenile nine-banded armadillos (Dasypus novemcinctus) in staged encounters.
Am. Midl. Nat. 139(1), 125-133.

Loughry, W.J. und C.M. McDonough (1994):
Scent discrimination by infant nine-banded armadillos.
J. Mammal. 75(4), 1033-1039.

Loughry, W.J. und C.M. McDonough (1997):
Survey of the Xenarthrans inhabiting Poço das Antas Biological Reserve.
Edentata 3, 5-7.

Loughry, W.J. und C.M. McDonough (1998):
Comparisons between nine-banded armadillo (Dasypus novemcinctus) populations in Brazil and the United States.
Revista de Biología Tropical 46(4), 1173-1183.

Polyembryony in armadillos.
American Scientist 86, 274-279.

Correlates of reproductive success in a population of nine-banded armadillos
Canadian J. Zool. 76, 1815-1821.

Mackinnon, J.E., I.A. Conti-Díaz, et al. (1969):
Isolation of Sporothrix schenckii from nature and considerations on its
pathogenicity and ecology.
Sabouraudia 7, 38-45.

Maller, O. und M.R. Kare (1967):
Observations on the sense of taste in armadillos.
Anim. Behav. 15(1), 8-10.

Mañé-Garzón, F. (1977):
"La mulita pare nones y siempre de la misma clase" (Forma y origen de la
poliembriónia).
Revista de Biología del Uruguay 5(1), 5-25.

Estudio poblacional comparado de Chaetophractus villosus y Dasypus
hybridus en la Sierra de la Ventana.
XIV Jornadas Argentinas de Mastozoología, Salta, 19-20.
The discovery of the Brazilian three banded armadillo in the Cerrado of Central Brazil.

Marin-Padilla, M. und K. Benirschke (1963):
Thalidomide induced alterations in the blastocyst and placenta of the armadillo, Dasypus novemcinctus mexicanus, including a choriocarcinoma.
Am. J. of Path. 43(6), 999-1016.

Martin, B.E. (1916):
Tooth development in Dasypus novemcinctus.
J. Morphol. 27, 647-682.

Lepra salvaje en Dasypus novemcinctus (Linneo 1758).

Ectoparásitos (Siphonaptera y Acari) más comunes en Dasypodidae (Mammalia: Xenarthra) de la República Argentina.

Mayer, J.J. (1989):
Occurrence of the nine-banded armadillo Dasypus novemcinctus in South Carolina USA.
Brimleyana 15, 1-5.

Mazza, S. und C. Anderson (1926):
Filaires (Acanthocheilonema tatusi n. sp.) dans le péritoine et microfilaires dans le sang du tatou (Tatus hybridus).
Arch. Institut Pasteur Tunis 15, 344-347.

McCusker, J.S. (1985):
Testicular cycles of the common long-nosed armadillo in north central Texas.

McDonough, C.M. (1994):
Determinants of aggression in nine-banded armadillos.
J. Mammal. 75, 189-198.

McDonough, C.M. (1997):
Pairing behavior of the nine-banded armadillo (Dasypus novemcinctus).

McDonough, C.M. und W.J. Loughry (1997):
Influences on activity patterns in a population of nine-banded armadillos.
J. Mammal. 78(3), 932-941.

Meritt, D.A., Jr. (1977):
Edentate nutrition.

Meritt, D.A., Jr. (1985a):
The fairy armadillo, Chlamyphorus truncatus Harlan.

Meritt, D.A., Jr. (1985b):
Naked-tailed armadillos, Cabassous sp.

Meritt, D.A., Jr. (n.d.):
Edentate hand-rearing.
(unpublished), 1-11.

Meritt, D.A., Jr. und K. Benirschke (1973):
The chromosomes of Zaedyus pichiy ameghino.

Edentates.

Meyer, A. (1933):
Acanthocephala.

Miles, M.A., A. Souza, et al. (1978):
Isozymic heterogeneity of Trypanosoma cruzi in the first autochthonous patients with Chagas' disease in Amazonian Brazil.
Nature 272, 819-821.

Minoprio, J.D.L. (1945):
Sobre el Chlamyphorus truncatus Harlan.
Acta Zoológica Lilloana 3, 5-58.

Molin, R. (1860):
Il sottoraine degli Acrofalli (Venezia).
Venipuncture sites in armadillos (Dasypus novemcinctus).

Moser, G.H. und K. Benirschke (1962):
Fetal zone of the adrenal gland in the nine-banded armadillo.

Motie, A., D.M. Myers, et al. (1986):
A serologic survey for leptospirosis in nine-banded armadillos in Florida.
J. Wildl. Dis. 22(3), 423-424.

Ovariectomy in the nine-banded armadillo (Dasypus novemcinctus).

Naiff, R.D., L.C. Ferreira, et al. (1986):
Paracoccidioidomycosis enzootica em tatus (Dasypus novemcinctus) no estado do Pará.

Epidemiological and nosological aspects of Leishmania naiffi Lainson & Shaw, 1989.

Nakakura, K., N.M. Czekala, et al. (1982):
Fetal-maternal gradients of steroid hormones in the nine-banded armadillo (Dasypus novemcinctus).
J. Reprod. Fert. 66(2), 635-644.

Navone, G.T. (1986):
Estudios parasitológicos en edentados argentinos. II. Nematodes parasitos de armadillos: Aspidodera fasciata (Schneider, 1866); Aspidodera scoleciformis (Diesing, 1851) y Aspidodera vazi Proença, 1937. (Nematoda-Heterakoidea) Neotropica 32(87), 71-79.

Estudios parasitológicos en edentados argentinos. III. Nematodes Trichostrongylidos, Macielia elongaa sp. nov.; Moennigia virilis sp. nov. y Trichohelix tuberculata (Parona y Stossich, 1901) Ortlepp, 1922 (Molineidae-Anoplostrongylinae) parásitos de Chaetophractus villosus Desmarest y Tolypeutes matacus (Desmarest). (Xenarthra - Dasypodidae) Neotropica 33(90), 105-117.
Estudios parasitológicos en edentados argentinos. IV. Cestodes pertenecientes a la familia Anoplocephalidae cholodkovsky, 1902, parásitos de dasypodidos.
Neotropica 34(91), 51-61.

Navone, G.T. und O. Lombardero (1980):
Estudios parasitológicos en edentados argentinos. I. Pterygodermatites (Pterygodermatites) chaetophracti sp. nov. en Chaetophractus villosus y Dasypus hybridus (Nematoda: Spirurida).
Neotropica 26(75), 65-70.

Newman, H.H. (1913):
The natural history of the nine-banded armadillo in Texas.
Am. Nat. 47, 513-539.

The biology of twins (Mammals).
Univ. of Chicago Press., Chicago

Newman, H.H. und J.T. Patterson (1910):
The development of the nine-banded armadillo from the primitive streak stage to birth.
J. Morph. 21, 359-424.

Nidasio, G. und W. Graffam (1999):
Vitamina K.

Niño, F.L. (1937):
Triquinosis experimental en el "peludo".

Olmos, F. (1995):
Edentates in the caatinga of Serra da Capivara National Park.
Edentata 2, 16-17.

Olrog, C.C. (1979):
Los mamíferos de la selva húmeda, Cerro Calilegua, Jujuy.

Manutenção de tatus em cativeiro e resultados de inoculação do Mycobacterium leprae.
Hansenologia Internationalis 5(1), 28-36.

Ostenrath, F. (1974):
Haltung von Riesengürteltieren (Priodontes giganteus) im Zoo Duisburg.
Zeitschrift des Kölner Zoo(4), 145-146.
Owen, R. (1830-1831):
Notes on the anatomy of the nine-banded armadillo (Dasypus peba, Desm.).

Field ecology of Dasypus sabanicola in the Flood Savanna of Venezuela.

Las mulitas.
Fauna argentina. Vol. 34. Edited by Contreras, J.R. Buenos Aires, Centro Editor de America Latina S.A., 32 Seiten.

Enciclopedia de los mamíferos de Argentina.
CD-Rom,

Patterson, J.T. (1912):
A preliminary report on the demonstration of polyembryonic development in the armadillo (Tatu novemcinctum).
Anat. Anz. 41, 369-381.

Fibroma in a nine-banded armadillo.
J. Comp. Path. 93(2), 179-184.

Peppler, R.D. (1979):
Reproductive parameters in the nine-banded armadillo.

J. Reprod. Fert. 76(1), 141-146.

Plasma progesterone level in the female armadillo during delayed implantation and gestation: preliminary report.

Clomiphene-induced ovulation in the 9-banded armadillo (Dasypus novemcinctus).
Plasma progesterone level during delayed implantation, gestation and postpartum period in the armadillo.

Annual pattern in plasma testosterone in the male armadillo, Dasypus novemcinctus.

Epithalamus of the nine-banded armadillo, Dasypus novemcinctus.
Comp. Biochem. Physiol. 85A(3), 477-481.

Pinto, C. und A. Dreyfus (1927):
Tunga travassosi n. sp. parasita de Tatusia novemcinctus do Brasil.

Pinto, C.F. (1944):
Um ano de combate ás doenças parasitárias que atacam os rodoviários da estrada Rio - Bahia, 1942 & 1943.

Social facilitation of eating behavior in armadillos.
Psych. Reports 20, 1136.

Brimleyana 0(23), 89-93.

Impact of cool temperature on transformation of human and armadillo lymphocytes (Dasypus novemcinctus, Linn.) as related to leprosy.
Nature 248(5447), 450-452.

The immune system of the nine-banded armadillo (Dasypus novemcinctus, Linn).

A mexican armadillo (Dasypus novemcinctus) colony for leprosy research.
Int. J. Lepr. 55(4), 716-718.
Quevedo, F., J. Lasta, et al. (1978):
The armadillo as a reservoir host for Salmonella.

Railliet, A. und A.C.L. Henry (1914):
Essai de classification des Heterakidae.

Ramsey, P.R., D.F.J. Tyler, et al. (1981):
Blood chemistry and nutritional balance of wild and captive armadillos (Dasypus novemcinctus L.).
Comp. Biochem. Physiol. (A) 69A, 517-521.

Ratajszczak, R. und E. Trzesowska (1997):
Management and breeding of the Larger Hairy Armadillo, Chaetophractus villosus, at Pozan Zoo.

The edentates of the cerrado.
Edentata 1(1), 4-10.

Food habits of armadillos (Xenarthra: Dasypodidae).

Redford, K.H. (1986):
Dietary specialization and variation in two mammalian myrmecophages (variation in mammalian myrmecophagy).
Revista Chilena de Historia Natural 59, 201-208.

Ants and termites as food. Patterns of mammalian myrmecophagy.

Order Xenarthra (Edentata): Family Dasypodidae.

Comunicación de un caso micobacteriosis esplenica natural en el armadillo con características histopatológicas y tintoriales similares a la lepra.
El armadillo en su etapa de adaptación al cautiverio.
Vet. Arg. 3(23), 258-264.

Patología del armadillo en cautividad 2. Etiología y diagnóstico de las
afecciones respiratorias.
Vet. Arg. 2(20), 925-930.

Ribeiro, D.J. (1941):
Contribuição para o conhecimento da fauna helmintológica de Minas Gerais.
"Eurytrema minensis" n. sp., parasito de "D. novemcinctus".

Stress-induced adrenal changes and their relation to reproductive failure in
captive nine-banded armadillos (Dasypus novemcinctus).
Zoo Biol. 4, 129-137.

The management and reproduction on the large hairy armadillo
Chaetophractus villosus at the National Zoological Park.
Int. Zoo Yb. 22, 185-194.

Termorregulación en Euphractus sexcinctus (Mammalia: Dasypodidae).
Physis, Buenos Aires 29(78), 27-32.

Observaciones sobre la termorregulación en Zaedyus pichiy.

Notes on the behavior of the pygmy armadillo.
J. Mammal. 51(1), 179.

Autonomic innervation of salivary glands in the armadillo, anteater and sloth
(Edentata).

The armadillo Euphractus sexcinctus as a suitable animal for experimental
studies of Jorge Lobo's disease.

Sanborn, C.C. (1930):
Distribution and habits of the three-banded armadillo (Tolypeutes).
J. Mammal. 11(1), 61-69.

Shaw, J.J. (1985):
The hemoflagellates of sloths, vermilinguas (anteaters), and armadillos.
In: The evolution and ecology of armadillos, sloths and vermilinguas.
(Montgomery, G.G., ed.) Smithsonian Institution Press, Washington, London,
279-292.

Sikes, R.S., G.A. Heidt, et al. (1990):
Seasonal diets of the nine-banded armadillo Dasypus novemcinctus in a
northern part of its range.

Northwestern distribution of the yellow-armadillo (Euphractus sexcinctus) in
the state of Maranhão, Brazil (Xenarthra, Dasypodidae).
XIII Jornadas Argentinas de Mastozoología, Misiones, Argentina, 77.

Leprosy-like disease of wild armadillos in French Acadiana, Louisiana.
J. Reticuloendothel. Soc. 24(6), 705-719.

Leprosy in wild armadillos (Dasypus novemcinctus) of the Texas Gulf Coast:
Epidemiology and mycobacteriology.
J. Reticuloendothel. Soc. 34(2), 75-88.

Smith, K.K. und K.H. Redford (1990):
The anatomy and function of the feeding apparatus in two armadillos
(Dasypoda): anatomy is not destiny.
J. Zool., Lond. 222, 27-47.

The amazing armadillo: geography of a folk critter.
University of Texas Press, Austin, 134 Seiten

Natural infection by Entamoeba histolytica Schaudinn, 1903 in Euphractus
sexcinctus (armadillo) kept in captivity. [Portuguese]
Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 52(3), 208-209.

Sprehn, C. (1932):
Ueber einige von Dr. Eisentraut in Bolivien gesammelte Nematoden.

Ascaridoid nematodes of South American mammals, with a definition of a new
genus.
J. Helminthology 56(3), 275-295.

Storrs, E.E. und R.J. Williams (1968):
A study of monozygous quadruplet armadillos in relation to mammalian inheritance.

Strahl, H. (1914):
Ueber den Bau der Plazenta von Dasypus novemcinctus. II.

Stuart, B.P., W.A. Crowell, et al. (1977):
Spontaneous renal disease in Louisiana armadillos (Dasypus novemcinctus).
J. Wildl. Dis. 13(3), 240-244.

Helmintos parásitos de dasipódidos del departamento de Copo, provincia de Santiago del Estero, Argentina.
XIII Jornadas Argentinas de Mastozoología, Misiones, Argentina, 152.

Szabuniewicz, M. und J.D. Mc Grady (1969):
Some aspects of the anatomy and physiology of the armadillo.
Lab. Anim. Care 19, 843-848.

Stomach contents of the greater long-nosed armadillo (Dasypus kappleri) in Venezuela.
Mammalia 52(3), 422-425.

Taber, F.W. (1945):
Contribution on the life history and ecology of the nine-banded armadillo.
J. Mammal. 26, 211-226.

Talmage und Buchanan (1954):
The armadillo. A review of its natural history, ecology, anatomy and reproductive physiology.

Observations of nest construction and bathing behaviors in the nine-banded armadillo Dasypus novemcinctus.

Recent range expansion and distributional limits of the nine-banded armadillo (Dasypus novemcinctus) in the United States
J. Biogeogr. 23(5), 635-648.

Armadillo exposure among Mexican-born patients with lepromatous leprosy.
J. Infect. Dis. 156(6), 990-992.
Thomas, O. (1911):
The mammals of the tenth edition of Linnaeus: an attempt to fix the types of the genera and the exact bases and localities of the species.

Seasonal variation in spermatogenesis in the nine-banded armadillo from south-eastern Brazil.
Animal Reproduction Science 6(2), 135-141.

Travassos, L.P. (1917):

Travassos, L.P. (1921):
Contribuições para o conhecimento da fauna helmintológica brasileira. XIII. Ensaio monográfico da família Trichostrongylidae Leiper (1909).

Travassos, L.P. (1926):
Ascaris retusa (Rudolph 1819).
Bol. Biol., S.Paulo, 87. (zitiert in Talmage und Buchanan, 1954)

Travassos, L.P. (1935):
Alguns novos gêneros e espécies de Trichostrongylidae.

Travassos, L.P. (1937):
Revisão da família Trichostrongylidae Leiper 1912.
Monographias Inst. Oswaldo Cruz. Typ. do Instituto Oswaldo Cruz, Rio de Janeiro, 512 Seiten

Truman, R. und R. Sanchez (1993):
Armadillos: Models for leprosy.
Lab. Anim., 28-32.

Antibodies to the phenolic glypolipid-1 antigen for epidemiologic investigations of enzootic leprosy in armadillos (Dasypus novemcinctus).
Lepr. Rev. 61, 19-24.

Seasonal and spatial trends in the detectability of leprosy in wild armadillos.
Epidemiol. Infect. 106(549-560).

Vogelsang-Wilckens, E.G. (1932):
Nuevos huéspedes para Ancylostomatidae Lane 1917.

Walker, E.P. (1975):
Order: Edentata.

Wallach, J.D. und W.J. Boever (1983):
Edentates.
In: Diseases of Exotic Animals - Medical and Surgical Management. (Wallach,

Experimental leprosy in the nine-banded armadillo (Dasypus novemcinctus).
The armadillo as an experimental model in biomedical research, Pan
American Health Organization, Sci. Publ. No. 366, Caracas, Venezuela, 57-
63.

Walsh, G.P., W.M. Meyers, et al. (1986):
Naturally acquired leprosy in the nine-banded armadillo: A decade of
J. of Leukocyte Biology 40(5), 645-656.

Husbandry and health problems of armadillos.

Weaker, F.J. (1980):
Morphology of the prostate gland in the nine-banded armadillo.

Weaker, F.J. (1981):
Light microscopic and ultrastructural features of the Harderian gland of the
nine-banded armadillo.
J. Anat. 133(1), 49-65.

Wegner, R.N. (1922):
Der Stützknochen Os nariale, in der Nasenhöhle bei den Gürteltieren,
Dasypodidae, und seine homologen Gebilde bei Amphibien, Reptilien und
Monotremen.

Mammalian wildlife diseases as hazards to man and livestock in an area of
the Llanos Orientales of Colombia.
J. Wildl. Dis. 17(1), 153-162.
Sporotrichosis in a nine-banded armadillo (Dasypus novemcinctus).

Wetzel, R.M. (1985a):
The identification and distribution of recent Xenarthra (=Edentata).
In: The evolution and ecology of armadillos, sloths and vermilinguas
(Montgomery, G.G., ed.) Smithsonian Institution Press, Washington and
London, 5-21.

Wetzel, R.M. (1985b):
Taxonomy and distribution of armadillos, Dasypodidae.
In: The evolution and ecology of armadillos, sloths and vermilinguas
(Montgomery, G.G., ed.) Smithsonian Institution Press, Washington and

Wetzel, R.M. und E. Mondolfi (1979):
The subgenera and species of long-nosed armadillos, Genus Dasypus L.
In: Vertebrate ecology in the northern neotropics (Eisenberg, J.F., ed.) The

Notes on some ectoparasites from mammals of Paraguay.
Entomological News 98(4), 198-204.

The septomaxilla of fossil and recent synapsids and the problem of the
septomaxilla of monotremes and armadillos.
Zool. J. Linn. Soc. 98, 203-228.

Attempt to infect the nine-banded armadillo with Treponema pallidum.

Wilson, G.T., P. Horton, et al. (1984):
Absence of leprosy-like disease in the nine-banded armadillo in and around
Taylor County, Texas.
Texas J. Sci. 36(1), 73-79.

Food habits of the common long-nosed armadillo Dasypus novemcinctus in
Florida.
In: The evolution and ecology of armadillos, sloths and vermilinguas
(Montgomery, G.G., ed.) Smithsonian Institution Press, Washington &

Wislocki, G.B. und W.L.J. Straus (1933):
On the blood vascular bundles in the limbs of certain Edentates and Lemurs.
Wolffhugel, K. (1920):
Die Parasiten der Haustiere in Südamerika, besonders in den La Platastaaten.

The IUCN Mammal Red Data Book.
Vol. 1; IUCN, Gland, Switzerland

The prevalence of Trypanosoma cruzi infection in armadillos collected at a site near New Orleans, Louisiana.

Yepes, J. (1928):
Los Edentata argentinos.
Revista universitaria de Buenos Aires 2a(1), 1-50.

New ontogenetic evidence on the septomaxilla of Tamandua and Choloepus (Mammalia, Xenarthra), with a reevaluation of the homology of the septomaxilla.

Burrow characteristics of the nine-banded armadillo, Dasypus novemcinctus.
Southwestern Nat. 35(2), 226-227.
Meinen herzlichen Dank

- Herrn Prof. Dr. Ewald Isenbügel für die Überlassung des Themas und die Übernahme des Referates.
- Herrn Prof. Dr. Rico Thun für die Übernahme des Korreferates.
- Herrn Prof. Dr. Marcel Wanner für die Übernahme des zweiten Korreferates.
- Allen Tierärzten und Tierpflegern, die sich die Zeit genommen haben, den Fragebogen zu beantworten.
- Dennis A. Meritt Jr., Richard Truman, Guillermo Pérez Jimeno, Roberto Aguilar, Sergio Vizcaíno, Gustavo Solís, Susana Arzuaga, Juan Carlos Sassaroli, Guillermo Lemus, Walter Correa, Ivan Rubiano, Suzanne McPhee, Michael Hässig, den Mitgliedern des “Grupo de Investigadores en Xenarthros” (GIEX) und allen namentlich nicht aufgeführten Personen, welche mir mit ihrer Beratung und steten Unterstützung wertvolle Hinweise geliefert haben.
- Meiner Familie für das Verständnis und die Unterstützung während der Studienzeit und der Dissertation.
- Der Kommission für Reisestipendien der Schweizerischen Akademie der Naturwissenschaften für ihre finanzielle Unterstützung der Feldstudien und Praktika in Argentinien.

Lebenslauf

Geboren am 20. September 1973 in Wettingen / AG.
Bürgerin von Winterthur / ZH und Aarau / AG.

1979 – 1985 Primarschule in Brüssel, Belgien, und Winterthur / ZH
1985 – 1987 Sekundarschule in Winterthur
1987 – 1991 Gymnasium an der Kantonsschule Im Lee, Winterthur
Abschluss mit der Maturität Typus D
1993 – 1998 Studium der Veterinärmedizin und Staatsexamen an der Universität Zürich