The xenarthrans of Honduras: new records, main threats, and comments on their conservation status

MANFREDO A. TURCIOS-CASCOA,1, HEFER D. ÁVILA-PALMAB, MARCIO MARTÍNEZC, EDUARDO J. TREJO-ORDOÑEZB, DAVID E. MEZA-FLORESD, FRANKLIN CASTAÑEDAE, TRAVIS KINGF, DANIEL THORNTONF & MARIELLA SUPERINAG

ADepartamento de Vida Silvestre, Instituto Nacional de Conservación y Desarrollo Forestal, Áreas Protegidas y Vida Silvestre (ICF), Brisas de Olancho, Francisco Morazán, Honduras

BEscuela de Biología, Universidad Nacional Autónoma de Honduras (UNAH), Boulevard Suyapa, Tegucigalpa, Honduras

CRegión Biosfera del Río Plátano, Instituto Nacional de Conservación y Desarrollo Forestal, Áreas Protegidas y Vida Silvestre (ICF), Marañones, Olancho, Honduras

DAsociación de Investigación para el Desarrollo Ecológico y Socioeconómico (ASIDE), Barrio Las Delicias, El Progreso, Yoro, Honduras

EPanthera, Col. Los Robles, Bloque L, 3415, Tegucigalpa, Honduras

FWashington State University, School of the Environment, 1230 Webster Hall, Pullman, WA 99163, USA

GLaboratorio de Medicina y Endocrinología de la Fauna Silvestre, IMBECU – CCT CONICET Mendoza – UNCuyo, Mendoza, Argentina

1Corresponding author. E-mail: manturcios21@gmail.com

Abstract The Xenarthra are one of the least studied mammalian groups in Honduras. Their ecology, natural history, and distribution in the country are poorly known. Here we compile and discuss, for the first time, the available information about the seven species of Xenarthra that occur in Honduras. We also present new distribution records and comment on their main threats. The lack of specific scientific studies, poaching, illegal traffic, cultural beliefs, and deforestation are among the main threats to xenarthrans in Honduras.

Keywords: anteaters, armadillos, Central America, sloths, Xenarthra

Los xenartros de Honduras: nuevos registros, principales amenazas y comentarios sobre su estado de conservación

Resumen Xenarthra es uno de los grupos de mamíferos menos estudiados en Honduras, y de los que menos se sabe sobre su ecología, historia natural y distribución en el país. Aquí recopilamos y discutimos, por primera vez, la información disponible sobre cada una de las siete especies de Xenarthra que ocurren en Honduras. También presentamos nuevos registros de distribución y comentamos sobre las principales amenazas. La falta de estudios científicos, la cacería y el tráfico ilegal, creencias culturales y la deforestación están entre algunas de las principales amenazas para los xenartros en Honduras.

Palabras clave: armadillos, Centroamérica, hormigueros, perezosos, Xenarthra

Brief summary of mammalogy in Honduras: How many xenarthra species do we have?

Honduras is the second largest country of the Central American isthmus (Hernández Oré et al., 2016) (Fig. 1). Its territory includes an area of 112,492 km2 (excluding the marine territory), and it has a population of some 9.02 million inhabitants (INE, 2018). According to Duarte et al. (2014), 48% of the national territory of Honduras is covered by forests and 27% are protected areas. Even though it is a biodiverse country, many ecosystems remain poorly studied (e.g., dry forests, mangroves).
The baseline for mammalian research in Honduras was established by Goodwin (1942) in his seminal work *The mammals of Honduras*. Goodwin described 123 species of mammals within Honduras based on 2,213 specimens that had been collected primarily in the western and central region of the country by Cecil F. Underwood. Most species were based on a small number of scattered records. The lack of solid records from the entire extent of the country is still true; most of the available information on the mammals of Honduras, excluding large mammals, is based on technical reports, incomplete inventories, or specimens in personal collections that are not easily accessible. The exact number of mammal species in Honduras is uncertain, as research has mainly focused on certain taxonomic groups. For example, recent studies revealed that Chiroptera alone includes 113 species (Turcios-Casco et al., 2020), a number that corresponds to 92.3% of all mammals known for Honduras by 1942. Most national and international universities, governmental, and non-governmental entities have concentrated their research efforts on large mammals, such as Cervidae, Felidae, Tapiridae, and Tayassuidae. However, taxa such as insectivores, marsupials, rodents, and xenarthrans remain poorly studied. Except for bats, most of the information on small and medium-sized mammals is based on sporadic records obtained while studying large mammals.

Xenarthrans remain particularly understudied in Honduras. Goodwin (1942) mentioned five species: three anteaters (*Cyclopes didactylus*—now *Cy. dorsalis*, Miranda et al. (2018)—*Myrmecophaga tridactyla*, and *Tamandua mexicana*) and two armadillos (*Cabassous centralis* and *Dasypus novemcinctus*). Interestingly, Goodwin (1942) presented convincing evidence for the occurrence of only two

![Figure 1. Geographical location and land use coverage of Honduras.](image-url)
xenarthrans, *D. novemcinctus* and *T. mexicana*, while he expected the other anteater and armadillo species, but not sloths, to occur in the country. At that time, there were only anecdotal records of *Bradypus variegatus* and *Choloepus hoffmanni* in Honduras, which were officially recorded more than 50 years later (McCarthy et al., 1999), as discussed below. In addition, there is evidence of extinct xenarthrans in Honduras (Jackson & Fernandez, 2005; Lucas, 2008; Ferreira & Feijó Ramos, 2011; Zúñiga et al., 2019).

Hall (1981) considered six xenarthran species as occurring in Honduras: *B. variegatus*, *T. mexicana*, *M. tridactyla*, *Cy. dorsalis*, *D. novemcinctus*, and *C. centralis*, but no specific records were given for the last two species. Marineros & Martínez (1998) provided unconfirmed (and, in most cases, imprecise) localities for most of the mammalian species in the country, including all xenarthrans. No other reviews on the distribution, systematics, and conservation status of the Xenarthra of Honduras have been published.

The main objective of this work is to compile the available information on living xenarthrans in Honduras and to discuss the main threats they are facing. We provide published and new localities of anteaters, armadillos, and sloths in the country, and comment on their conservation status.

Materials and methods

We screened books, articles, dissertations, and theses found in academic research databases (*e.g.*, Google Scholar) as well as technical reports from Honduran government agencies and NGOs for records of xenarthrans. We also queried online databases such as Global Biodiversity Information Facility (GBIF) (https://www.gbif.org), VertNet (http://www.vertnet.org), Integrated Digitized Biocollections (iDigBio) (https://www.idigbio.org), and iNaturalist (https://www.inaturalist.org) with the terms *Bradypus*, *Cabassous*, *Choloepus*, *Cyclopes*, *Dasypus*, *Myrmecophaga*, and *Tamandua*, and filtered the results by country to limit them to Honduras. We then verified all coordinates of the obtained records. The following information was extracted for each individual record: species name, locality, municipality, and department, year of record, basis of record, and geographic coordinates (when available). We excluded records lacking precise information or scientific evidence for species identification. When the verified coordinates did not match the description, we excluded the record from the map, but did include the written description of its location.

Table 1. Common names for Xenarthra in Honduras, in Spanish and different indigenous languages. Source: Jones (1965), Marineros & Martínez (1998), SDGEPJAH (2015), and this work.

<table>
<thead>
<tr>
<th>Species</th>
<th>Spanish</th>
<th>Lenca</th>
<th>Miskitu</th>
<th>Pesh</th>
<th>Tawahka</th>
<th>Garifuna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradypus variegatus</td>
<td>perezoso de tres dedos, perico lerdo, camaleón, pereza</td>
<td>siwaiku</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choloepus hoffmanni</td>
<td>perezoso de dos dedos, pereza, camaleón, perico lerdo</td>
<td>siwaiku</td>
<td>um</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclopes dorsalis</td>
<td>serafín, perezocito, osito del platanar, ceibita</td>
<td>likur</td>
<td>wisurh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrmecophaga tridactyla</td>
<td>oso hormiguero, oso caballo, hormiguero gigante</td>
<td>sistan</td>
<td>wingku tara</td>
<td>coruya</td>
<td>dánka-takálvas</td>
<td>liwa, oso gaballu</td>
</tr>
<tr>
<td>Tamandua mexicana</td>
<td>tamandua, oso melero, oso hormiguero, oso de colmena, perico ligero, otro de colmena</td>
<td>zegüe, zapu, corca</td>
<td>wingku</td>
<td>kárkin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabassous centralis</td>
<td>tumbo, tumbo armado, pitero de uña, cusuco lechoso</td>
<td>patáwá</td>
<td>tákán tákán</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>cusuco, cusuco de nueve bandas, pitero</td>
<td>yagu</td>
<td>tairraa, tahira, ukmitkára, pantan waá</td>
<td>patáwá</td>
<td>úmika</td>
<td>gasigamu</td>
</tr>
</tbody>
</table>
in the text. We also included records registered by us, either by camera trapping (Bushnell, Moultrie, PANTHERA [V3, V4, and V5], Cuddeback, Reconyx, Browning units) or through direct observations, since 2010. Finally, we mapped all records per species; all those found in the literature were marked as “previous”, and our unpublished records as “new”. We determined the habitat types in which each species was recorded by overlaying the geographical layer of Life Zones (Holdridge, 1987) on the range maps. Detailed information on all obtained records can be found in the Supplementary Material 1.

Finally, we compiled the local common names of the seven species in Spanish and in different native languages of Honduras. They are given in Table 1.

Geographic distribution of the xenarthrans in Honduras

We found records of seven species of xenarthrans in Honduras, which correspond to those found in Nicaragua (Genoways & Timm, 2003). To our knowledge, this is the first use of “citizen scientist” observations of xenarthrans from Honduras to map their distribution. Databases such as iNaturalist hold a great potential for such analyses, provided the location data and identification are accurate.

Bradypus variegatus (Fig. 2). As mentioned above, Goodwin (1942) did not include this species in the list of mammals of Honduras. A few years later, Goodwin (1946) speculated that the distribution of Bradypus may extend to Patricia River (referring to Río Plátano in Departamento Gracias a Dios).

We confirmed 79 records distributed as follows: 21 new records presented herein, one from GBIF (2020), one from iNaturalist (2020), and 32 previous records by Von Hagen (1940), Marineros & Martínez (1998), McCarthy et al. (1999), Medina-Fitoria (2008), Castañeda et al. (2013b), Mérida Colindres & Cruz (2014), Marineros & Portillo Reyes (2015) (see Supplementary Material 1 for a discussion of the origin of some of these records), and La Prensa (2018). In addition, there are 24 zoo specimens listed by Acosta (2016) of which we could not determine if they still are in captivity. We excluded two records from Islas de la Bahía in northern Honduras listed in iNaturalist (2020) because the origin of the individuals is unknown.

Figure 2. Previous and new records of Bradypus variegatus in Honduras.
Although sloths can be difficult to observe in most areas of the country, *B. variegatus* may be locally abundant, at least in Honduras. On 18 September 2008, one of us (FC) counted 11 *B. variegatus* along the canals between Benk and Capri near the village of Raya in eastern Honduras. These records have been cited by Marineros & Portillo Reyes (2015) with an erroneous location, Raista (see Supplementary Material 1), and omitting the original authorship. All sloths were resting on mangrove trees at a distance of 1–6 m from the canal. The observations were made from a moving boat along a 5.5 km transect in only 36 minutes.

The species may also occur in the tropical forests of Cortés and Yoro, but this needs to be confirmed. Although sloths can be difficult to observe in most areas of the country, *B. variegatus* may be locally abundant, at least in Honduras. On 18 September 2008, one of us (FC) counted 11 *B. variegatus* along the canals between Benk and Capri near the village of Raya in eastern Honduras. These records have been cited by Marineros & Portillo Reyes (2015) with an erroneous location, Raista (see Supplementary Material 1), and omitting the original authorship. All sloths were resting on mangrove trees at a distance of 1–6 m from the canal. The observations were made from a moving boat along a 5.5 km transect in only 36 minutes.

Although sloths can be difficult to observe in most areas of the country, *B. variegatus* may be locally abundant, at least in Honduras. On 18 September 2008, one of us (FC) counted 11 *B. variegatus* along the canals between Benk and Capri near the village of Raya in eastern Honduras. These records have been cited by Marineros & Portillo Reyes (2015) with an erroneous location, Raista (see Supplementary Material 1), and omitting the original authorship. All sloths were resting on mangrove trees at a distance of 1–6 m from the canal. The observations were made from a moving boat along a 5.5 km transect in only 36 minutes.

The species may also occur in the tropical forests of Cortés and Yoro, but this needs to be confirmed. *Bradypus variegatus* has been found in subtropical wet forests and tropical moist forests, including mangroves, at elevations ranging from sea level to 658 m asl. Based on the frequency of records and the localities, *B. variegatus* seems to be the most common sloth species in Honduras.

Choloepus hoffmanni (Fig. 3). Hoffmann’s two-toed sloth is only known from 18 records. The first specimens were mentioned by Gamero (1978) and McCarthy et al. (1999). Martínez et al. (2020b)
described 13 records obtained between 2012 and 2020, including those mentioned by Acosta (2016). Here we add one additional record in Wampusiri-pi, Gracias a Dios, in the buffer zone of Río Plátano Biosphere Reserve (RPBR).

The species presence has thus only been confirmed in eastern Honduras, in Colón, El Paraíso, Gracias a Dios, and Olancho. It is probable that it also occurs in Yoro. Choloepus hoffmanni has been recorded in subtropical wet forests and tropical moist forests, at elevations from 53 to 1,000 m asl.

Cyclopes dorsalis (Fig. 4). Only 18 localities of *Cy. dorsalis* have been recorded since 1891, with one of them (McCain, 2001) consisting of at least two individuals (see below). Eight of them are mentioned by Goodwin (1942), Marineros & Martínez (1998), McCain (2001), Zepeda et al. (2012), and Bedrossian (2017); nine are from GBIF (2020); and one from iNaturalist (2020). One additional record of unknown origin is listed in GBIF (2020). It is noteworthy that McCain (2001) documented several occurrences of this species in the RPBR, including a mother with her half-grown offspring, but she did not specify the exact number of individuals observed.

The species has been found in Atlántida, Colón, Cortés, El Paraíso, Gracias a Dios, Olancho, Santa Bárbara, and Yoro. It occurs in subtropical wet forests and tropical moist forests, at altitudes between 58 and 1,430 m asl. Based on the known distribution, it may also occur in northern Comayagua.

Myrmecophaga tridactyla (Fig. 5). The case of *M. tridactyla* is interesting because, even though Goodwin (1942) included the species for Honduras, he stated that “the great anteater has apparently not been recorded from Honduras. Although rare where it is known to occur in Central America, its range may possibly include suitable localities in Honduras” (Goodwin, 1942:149–150). Today, the giant anteater is considered the most threatened xenarthran in Honduras. It is known from 25 records published by McCain (2001), Marineros & Martínez (1998), Portillo et al. (2010), Herrera et al. (2011), Gonthier & Castañeda (2013), Mérida Colindres & Cruz Días (2014), and Martínez et al. (2020a). Records are from Atlántida, where it is possibly extirpated; Colón, Gracias a Dios, and Olancho. It is restricted to subtropical moist and wet forests and tropical moist forests, where it occurs at elevations from 3 to 598 m asl. We did not find evidence that the species may be present in other regions of Honduras.

Figure 4. Previous records of *Cyclopes dorsalis* in Honduras. There are no new records reported.
Tamandua mexicana (Fig. 6). We compiled a total of 105 records of this species in Honduras. There are 47 records published by Benshoof et al. (1984), Marineros & Martínez (1998), McCain (2001), Komar et al. (2006), CATIE (2007), Medina-Fitoria (2008), Castañeda (2010), Portillo-Reyes & Hernández (2011), Portillo & Carrasco (2011), Castañeda et al. (2013a), Hoskins et al. (2018), Portillo et al. (2018), Portillo Reyes (2018), and King et al. (2019). Eight records are listed in GBIF (2020) and 12 in iNaturalist (2020). Seven zoo specimens are mentioned by Acosta (2016), but we could not determine if they are still in captivity. It should be noted that GBIF (2020) lists a record of *T. tetradactyla* from 1937 in “Atacamus”. We consider this record to be *T. mexicana* because *T. tetradactyla* was a subspecies of the former at that time (Navarrete & Ortega, 2011). We could not find any locality called Atacamus; it probably refers to Catacamas in Olancho, where *T. mexicana* has been recorded previously. We also include 31 new species records. This anteater has a wide distribution in Honduras, and records are only lacking from Lempira, Ocotepeque, and Islas de la Bahía. Considering the lack of research in western Honduras, it is possible that *T. mexicana* occurs in Lempira and Ocotepeque, but simply has remained unrecorded. This species occurs in subtropical moist forests, subtropical wet forests, tropical dry forests, and tropical moist forests, from sea level to 1,845 m asl.

Cabassous centralis (Fig. 7). A total of 23 records exist for Honduras. There is one record in GBIF (2020), two in iNaturalist (2020), and 12 published records by Miller (1899), Marineros & Martínez (1998), Komar et al. (2006), Castañeda et al. (2013b), Portillo Reyes & Elvir (2013), Hoskins et al. (2018), and MiAmbiente & Panthera (2018). We did not consider the record of Flores et al. (2019) in Choluteca because their work was based on interviews with local people, and no other evidence supports the species occurrence in southern Honduras. We add eight new records, including the first one in Comayagua. *Cabassous centralis* is only known from Atlántida, Cortés, Comayagua, Copán, Francisco Morazán, Olancho, and Yoro, at altitudes from 14 to 1,868 m asl. The species has been recorded in lower montane wet forests, tropical dry forests, subtropical moist forests, tropical moist forests, and subtropical wet forests.

Dasypus novemcinctus (Fig. 8). This is the most widely distributed xenarthran in Honduras. We confirmed 162 records from 1887 to 2020. Eight of the 29 records in GBIF (2020) and iNaturalist (2020)
Main threats to xenarthrans in Honduras

Several threats are affecting the xenarthrans in Honduras:

Cultural belief. The popular Honduran folk song “El pitero” tells the story of a man trying to catch an armadillo. The theme of this song suggests that, in the past, armadillo consumption was part of the Honduran culture. The song says al indio le gusta el maíz amarillo pero más le gusta el pitero tordillo (‘the Indios like yellow corn, but they like the dapple-gray armadillo even more’). Pitero is one of the common names of *D. novemcinctus* (*TABLE 1*), but the dapple-gray coloration may rather point towards *C. centralis*. Finally, the song concludes with tamal de piteros no lo como yo, porque mi abuelita de eso se murió (‘I don’t eat armadillo tamales because that’s what killed my grandmother’). This last verse may be the basis for the popular belief that armadillos, and specifically *C. centralis*, are venomous. Due to this belief, armadillos are killed indiscriminately in some regions of Honduras.

Intentional fires. According to the IUCN Red List of Threatened Species, three xenarthrans, *M. tridactyla* and both *Tamandua* species, are threatened by fires (IUCN, 2020; Superina & Abba, 2020). There is no doubt that forest fires would also directly affect
sloths and silky anteaters due to their limited ability to escape, and indirectly through the loss of suitable habitat. In this sense, wildfires are an increasingly important threat to xenarthrans in Honduras, although their impact has not been quantified. In the last decade, Honduras has lost 564,000 hectares of forest due to fires. An estimated 64% of wildfires are intentionally set, especially in the eastern part of the country, a region known as Honduran Mosquitia that encompasses Colón, Olancho, and Gracias a Dios. In this area, fire is used to clean pine forests (Medina-Moncada, 2018). Six of the seven xenarthrans have been recorded in this area, and it is reasonable to assume that a considerable number of individuals have succumbed during fires. In addition, poachers set fire to warrens, burrows, and caves, and kill the animals that emerge while trying to escape the fire or smoke. We have found burrows that had been set on fire as well as a tamandua hiding in a burned tree (Fig. 9A) in Mico Quemado and Las Guanchías Wildlife Refuge in Yoro. In addition, the most recent outbreak of the pine beetle (Dendroctonus frontalis) occurred between 2014 and 2016 and decimated more than 500,000 hectares of pine forest in 16 of the 18 departments of Honduras (ICF, 2017). Extensive fires have followed across the areas affected by the beetle, most likely reducing populations of *D. novemcinctus* and *T. mexicana*, the most common xenarthrans in the pine forest of Honduras.

Habitat loss. Around 1.7 million hectares have been deforested in Honduras during the last 40 years (López, 2015). Deforestation is especially affecting the Honduran Mosquitia. For instance, approximately 58,000 hectares are lost every year in Gracias a Dios (López, 2015). Habitat loss also occurs within the RPBR, which encompasses 832,339 ha (Escuela Nacional de Ciencias Forestales, 2013). Although it is the largest protected area in the country and has one of the most intact forests in Mesoamerica, RPBR is losing 2,700 ha of native vegetation every year (SIGMOF, 2020). This could negatively affect the xenarthrans whose main distribution within the country lies in this area.

Hunting. Agreement 045-2011 allows subsistence hunting in cases of extreme poverty, which must be supported by socioeconomic studies (La Gaceta, 2012). Interestingly, of the seven species of xenarthrans occurring in Honduras, only *D. novemcinctus* is used for subsistence hunting by the ethnic groups of Tawahkas, Miskitus, Pesh, Garífunas, and Mestizos (Portillo, 2007). On the other hand, Article 117 of the Law of Forestry, Protected Areas, and Wildlife, approved by Decree 156-2007, prohibits hunting or capturing threatened and endangered
species, and stipulates that commercial or sports hunting of non-threatened species may be permitted by the corresponding authorities (Instituto Nacional de Conservación y Desarrollo Forestal, Areas Protegidas y Vida Silvestre; La Gaceta, 2008). The latter also have the faculty to ban hunting, declare hunting seasons, and regulate the activity. Permits for sports hunting are only issued if updated data on the species distribution, population density, and abundance are available. No authorizations for sports hunting of xenarthrans are currently in place. Illegal hunting does, however, occur. It especially affects armadillos, which are used as trophies, as a protein source, and to manufacture handcrafts (e.g., bags). Armadillos are sold—alive or dead—on road-sides, a phenomenon we have often observed on the southern main road of Honduras. In addition, they are captured, injured, and used as baits to hunt larger-sized animals, especially felids. Poaching occurs both outside and within protected areas, such as Jeannette Kawas National Park and Nombre de Dios National Park. Hunters are usually accompanied by trained dogs that will attack and injure or kill almost any animal they can find, including sloths. Nonetheless, the term *perro cusiquero* is common in rural areas of Honduras and translates as 'armadillo-dog', referring to dogs that are specially trained to find and hunt armadillos. Poachers with dogs will usually try to avoid *M. tridactyla* as this large xenarthran can injure or kill dogs. Despite this, poachers will kill giant anteaters precisely due to the threat they represent to their dogs.

Illegal traffic. To our knowledge, no xenarthrans have been exported from Honduras to other countries in the past several years, which suggests that international traffic is currently not a threat. There are no records of any legal export of *M. tridactyla*, the only Honduran xenarthran listed in the CITES Appendices (*T. mexicana* is listed in Appendix III only for Guatemala, and *Ch. hoffmanni* was removed from Appendix III, where it was only listed for Costa Rica, in November 2019; CITES, 2020). McCain (2001) reports on an attempt to illegally export a giant anteater to Asia, but we could not find any other evidence of potential international traffic. There is, however, regional traffic for the pet trade of all xenarthrans, except *M. tridactyla*, that could potentially affect their wild populations. For example, half of the known records of *Ch. hoffmanni* correspond to confiscated animals or specimens that are located in *ex situ* conservation centers, which probably have been confiscated from traffickers (Martínez et al., 2020b). It is therefore possible that

Figure 8. Previous and new records of *Dasypus novemcinctus* in Honduras.
these activities are affecting the wild sloth populations, and especially those of Ch. hoffmanni, in Honduras. On the other hand, 29% of the known records of B. variegatus correspond to individuals confiscated in 2018 (Fig. 9B), suggesting an increasing pressure on this species. For example, in November of 2018, ten B. variegatus were found in a cage inside a house in Puerto Lempira, Gracias a Dios. This house was, supposedly, the base for a wildlife trafficking operation in which many different species were held before being shipped outside of La Mosquitia. The sloths were confiscated and returned to their natural habitat, but no arrests or legal actions were taken. Such a large number of seized sloths could have been easily captured by the traffickers at the Raya canals mentioned above, where the species is (or was) abundant. It is difficult to assess the extent of this threat due to the lack of law enforcement and high levels of corruption in most terrestrial, aerial, and marine ports and frontiers, allowing for trafficked animals to pass unnoticed and for law offenders to remain in impunity.

Lack of knowledge, conservation strategies, and awareness. Most armadillo and tamandua records are based on camera trap studies targeted at other species, such as Panthela onca. Research specifically aimed at investigating the ecology, behavior, and natural history of xenarthrans is virtually non-existent in the country. For instance, Cy. dor-salis is a notoriously understudied mammal, and the scarcity of records may be due to the lack of research targeted at this small, inconspicuous species. Especially in southern Honduras, T. mexicana is persecuted due to a lack of awareness. For example, the rescue center “El Ocotal” received three injured tamanduas from Pespire (Choluteca) and La Venta (Francisco Morazán) in three years. One of them had been injured with a machete because it had been “invading” a private property, and the other two had been attacked by locals who thought they were harmful animals. Furthermore, there are no actions taken specifically for the conservation of xenarthrans in Honduras.

Roadkills. Vehicle collisions are an important cause of mortality for many xenarthrans (Superina & Abba, 2020). This is also true in Honduras, especially on the main roads that cross the country from north to south. New roads are especially problematic, and more so if they border or cross a protected area. Not only do these roads fragment native habitats and increase the chances of wild animals being hit by a vehicle; in addition, people use them to access previously undisturbed forested areas to carry out motocross and other recreational activities that disturb or directly affect wildlife. We have observed T. mexicana roadkills on the new road that connects Copán with Cortés, and found dead tamanduas and armadillos on the road that crosses the Nombre de Dios National Park to connect Atlántida and Colón. As there are plans to extend this road, we expect an increase in vehicle-induced mortality of xenarthrans, but also other wild species, in the near future.

“Selfie tourism.” The use of wildlife as photo props is an increasing cause of concern in terms of animal welfare, especially if it involves direct physical contact between tourists and animals (Carder et al., 2018). Although handling wildlife is illegal in many countries, offering wild animals as photo props is a source of income in many touristic areas (World Animal Protection, 2017). It may also represent a conservation threat, as the animals offered as photo props are often extracted from the wild—which may involve illegal trade—, maintained in inappropriate conditions, and simply replaced by other individuals after their death (Osterberg & Nekaris, 2015; World Animal Protection, 2017). This is especially true for Bradypus, which are appealing for the wildlife trade and are used as photo props due to their docile nature, but difficult to maintain in captivity (Moreno & Plese, 2006; Superrina et al., 2008; World Animal Protection, 2017; Carder et al., 2018). We have identified “sanctuaries” in northern Honduras that advertised themselves as “ex situ conservation sites”, but illegally kept wildlife—including jaguars, capuchin monkeys, and sloths—and charged visitors for taking selfies with the animals. Some animals had been trained using cruel methods, mutilated, or sedated to avoid tourists being harmed during the “selfie time”. The fact that sloths are offered as photo props on Islas de la Bahía, where they do not naturally occur, is worrisome, as these animals must have been extracted from the wild in other parts of the country.

Are there any conservation measures in place for the xenarthrans in Honduras?

In 1998, the environmental authorities (Administración Forestal del Estado-Corporación Hon- dureña de Desarrollo Forestal, AFE-COHDEFOR) issued Resolution GG-APVS-003-98 to legally protect some species of interest in Honduras. It includes six of the seven Xenartha species, which is surprising because, as mentioned above, the presence of the two sloth species in Honduras was scientifically documented a year after the resolution (see McCarthy et al., 1999).

Bradypus variegatus and Ch. hoffmanni are listed as rare, with importance for ecotourism, and priority for conservation in certain areas; C. centralis as a species of cultural importance; M. tridactyla as endangered, with priority for conservation in certain areas; Cy. didactylus (now Cy. dorsalis) as rare, with importance for ecotourism, trade and consumption, and priority for conservation in certain areas; and T. mexicana as threatened, with importance for
ecotourism. It should be noted that species in the category “importance for trade and consumption” may be relevant for either of these two activities, but not necessarily for both of them.

SERNA (2008) published a list of “species of special concern in Honduras”, which was meant as an update of Resolution GG-APVS-003-98 but does not replace the latter. None of the xenarthrans was considered by SERNA (2008) to be regionally threatened.

The Law of Forestry, Protected Areas, and Wildlife (Decree 156-2007) stipulates that capturing, hunting or trading wildlife without permission from the corresponding authorities, or mutilating, harming, hitting, causing malnutrition, maltreating, or killing wildlife is a crime against the Honduran fauna that may be sanctioned with 1–9 years of incarceration (La Gaceta, 2008). We are only aware of confiscations of xenarthrans from the illegal trade, but not of any case in which the lawbreaker was sanctioned with incarceration.

Honduras has legal and conservation tools to protect and monitor many species, such as the jaguar (Panthera onca) (ICF, 2011) and the emerald hummingbird (Amazona luciae) (ASESORA, 2009). There are, however, no official documents that specifically mention the importance of, or actions aimed at, the conservation of xenarthrans in Honduras. Hence, their conservation currently depends on the actions of local people and a handful of researchers who have started paying attention to these charismatic species. Xenarthrans do, however, indirectly benefit from action plans for other species, such as jaguars. The latter is considered an umbrella species, and protecting jaguars also helps the conservation of other taxa, including xenarthrans (Figel et al., 2018).

Figure 9. A. Tamandua mexicana sheltered in the hole of a tree that had been set on fire. B. Bradypus variegatus confiscated by military soldiers in Farallones, Colón, in 2018.
Conservation status

The seven xenarthran species that occur in Honduras remain poorly studied, and determining their conservation status at the national level is therefore difficult. At first sight, the range maps (Figs. 2–8) would suggest that all species have a relatively wide distribution within the country, but they mask the fact that records of some species, such as *C. centralis*, *Cy. dorsalis*, and *M. triactyla*, are so scarce that even their exact distribution is unclear. Two species, *D. novemcinctus* and *T. mexicana*, are present in most of the country and relatively abundant (Figs. 6, 8). It would thus be reasonable to assume that they should be listed as Least Concern. Any attempt to determine the conservation status of the other species would be educated guesswork at best until additional field data are available. Even though the xenarthrans are protected by law against illegal traffic and poaching, they are hunted and traded in several areas of the country, including in protected areas. Cultural traditions and beliefs, road collisions, deforestation, and selfie tourism could also be negatively affecting the xenarthrans, but the impact of these threats on the wild populations is difficult to assess due to the lack of research.

CONCLUSION

There is no doubt that we have a lot of work ahead of us to be able to understand and protect the xenarthrans of Honduras. We hope this review helps the research community to know how and where to start, and that it will encourage researchers to initiate ecological and systematic studies about the xenarthrans of Honduras.

ACKNOWLEDGEMENTS

We thank El Ocotal, especially Alejandro Velásquez, and Danny Ordoñez, for sharing their records. We are grateful to Iris Acosta for her comments on the manuscripts, and to ICF, especially the technicians who are in charge of monitoring the biodiversity in certain areas of Honduras. Finally, we thank two anonymous reviewers, Gabriela F. Ruellan, and Agustín Abba for their comments that helped improve this manuscript. Graduate funding support to TWK was provided by the National Science Foundation Graduate Research Fellowship Program and the US Fulbright Student Fellowship.

REFERENCES

Ferreira, D.J. & M.I. Feijó Ramos. 2011. Análise bioestatística de *Eremotherium laurillardi* (Lund, 1842) de

La Prensa. 2018. Fiscalía de Honduras recupera 10 osos perezosos en La Mosquitia. Available at: https://www.laprensa.hn/honduras/1235597-410/fiscal%C3%ADa-de-honduras-recupera-10-osos-perezosos-en-la-mosquitia

López, E. 2015. La deforestación del bosque en Honduras: entre tala ilegal y una endeble institucionalidad.

Portillo Reyes, H.O. 2018. Monitoreo participativo de biodiversidad en el Corredor Biológico La Unión (estu-

Received: 29 June 2020; Accepted: 2 November 2020